Indirect dark matter search: Cosmic positron spectrum measurement from 1 to 50 GeV with AMS-01

> For the AMS Collaboration: Henning Gast, J. Olzem, St. Schael RWTH Aachen

> > DPG-Tagung Dortmund 30. März 2006

#### Overview

• Motivation: Indirect search for neutralino dark matter

• The AMS-01 detector

• Positron identification with AMS-01 using bremsstrahlung events



• Positron fraction result







## Motivation: Indirect Dark Matter Search





#### Candidate: SUSY-Neutralino

#### New particle?

stable

theories

• only weak interaction with "normal" matter

Properties of the Neutralino  $\chi$  appearing in certain SUSY

Scenario: SUSY with R-Parity conservation (2 SUSY fields at the vertex) ⇒ LSP is stable If it is neutral ⇒ only weak elastic scattering with normal matter

> Annihilations occur:  $\chi\chi \rightarrow l^{+}l^{-}, W^{+}W^{-}, q\overline{q}^{-}, ...$



#### ⇒ primary source of positrons

flux of secondary positrons must be known



## STS-91 Discovery in June 1998

Duration: 10 days Altitude: 320-390 km

#### **Spacehab**

S

AMS

35

# MIR adapter

10<sup>8</sup> events recorded during 184 hours of data taking

### The AMS-01 experiment



#### Alpha Magnetic Spectrometer Particle spectrometer in space as a prototype for the AMS-02 experiment on the ISS

Particle Trajectory

**TOF** Layers

#### 2 double layers of scintillators (TOF)

fast trigger, measuring  $\beta$ , flight direction and charge number

## Permanent magnet cylindrical dipole, 0.15 T

Anticounter scintillators veto against lateral tracks

Silicon tracker  $\downarrow_{\text{E}}$ 6 analog layers of double-sided silicon for tracking and dE/dx (Z > 1)



Low Energy Particle Shields

Single tracks: measurement up to the čerenkov limit (3 GeV) 2 layered aerogel čerenkov counter measuring  $\beta$ , e/p separation up to 3 GeV



## Signature of converted bremsstrahlung

- Primary  $e^+$ ,  $e^-$  radiate bremsstrahlung  $\gamma$
- $\gamma$  converts to e<sup>+</sup>e<sup>-</sup> pair

3 track signature, middle track is primary in >90% of events due to higher momentum

Small opening angles at vertices ( $\propto \gamma^{-1} \approx 0$ )

Bremsstrahlung yields "built-in" proton rejection by a factor of  $10^6$  (  $\sigma \propto 1/m^2$  )





## Dominant background





#### **Event reconstruction**





## **Background suppression**





Henning Gast - DPG Tagung Dortmund - 30. März 2006

### **Background suppression**





## Correction of irreducible background



#### 106 positron candidates in total



10

8

2

0 1

Background correction

from Monte Carlo:

• Energy spectrum

• Accurate scaling to data

• Geomagnetic field effects

Consider:

#### Total correction:

 ${\approx}23\%$  of the positron candidates

# Background peaks outside signal region



## **Positron fraction**





#### Conclusions

#### The AMS-01 detector is very well understood.

#### Positron identification through converted bremsstrahlung.

- Extension of the accessible energy range far beyond the design limits
- Full exhaustion of the detector's capabilities

# Level of disagreement with positron background is under study.

The AMS-02 experiment to be installed on the ISS will conduct cosmic-ray spectroscopy with unprecedented precision.

- Indirect dark matter search: positron, antiproton, gamma channels
- Look for cosmic antimatter (anti-He)
- Test propagation models (<sup>10</sup>Be/<sup>9</sup>Be, B/C)

