PEBS: Positron-Electron-Balloon-Spectrometer

Henning Gast I. Physikalisches Institut B

Berichtswoche zum GK "Elementarteilchenphysik an der TeV-Skala" -Bad Honnef, 27. August 2007

Introduction

Goal: Measure the cosmic-ray positron fraction with a balloon-borne spectrometer.

Motivation: Indirect search for dark matter.

Requirements:

- Large geometrical acceptance:
 - >1000 cm²sr for 20-day campaign
- Excellent proton suppression of O(10⁶)
- Good charge separation
- Payload weight < 2t
- Power consumption < 1000W

Prospective performance of PEBS detector

Henning Gast • Bad Honnef - 27. August 2007 • p 3/26

PEBS design overview

Tracker: Scintillating fibres $(d=250 \ \mu m)$ with Silicon Photo-Multiplier (SiPM) readout; power: 260W

Solar panels: power for subdetectors, communications, data handling ~600 W

Time-of-Flight system (TOF): 2 x 2 x 5 mm scintillator, SiPM readout; trigger system!

2.2 m

PEBS design overview

Balloons

Tracker modules

8 superlayers of 25 double-layered modules of scintillating fibres, d=250 μ m, stack of fibres accumulates light on SiPM readout of SiPMs by dedicated VA chip material budget: 12% X0 (6% X0 tracker + 6% X0 TRD)

Henning Gast

PEBS fibre tracker testbeam setup

Henning Gast

Bad Honnef - 27. August 2007

p 8/26

SiPM: example of a MIP spectrum

Henning Gast • Bad Honnef - 27. August 2007

p 9/26

Problem: Track finding under SiPM noise conditions

Opened file /.automount/net_rw/net_data_ams2-c1/ams/users/henning/bms/results/muons_tracker_20GeV_noise0/root/results_80000.root

Henning Gast •

Bad Honnef - 27. August 2007

•

Moderate SiPM noise

New seedless track finding algorithm

Henning Gast • Bad Honnef - 27. August 2007 • p 12/26

Track finding efficiency and fake rate

Low energy behaviour

ECAL proton rejection and energy resolution

ECAL energy resolution at high energies

ECAL energy resolution at higher energies limited by:

- leakage effect
- limited number of pixels
 in SiPM: non-linearity
 and saturation effects

Investigating possibility to measure electron spectrum in TeV range...

TRD design

single TRD module

Tasks: proton suppression and tracking in non-bending plane

TRD prototype prepared for testbeam (2000)

2 x 8 layers of fleece radiator, TR x-ray photons absorbed by Xe/CO2 mixture (80:20), in 6mm straw tubes with 30 μ m tungsten wire Design equivalent to AMS02 space experiment

AMS02 TRD octagon integrated at RWTH Aachen workshop

Geant4 simulation of TRD testbeam (2000)

20-layer TRD prototype subjected to 20 GeV electron and 20-200 GeV proton beams at CERN Question: What is the reliability of the TR and energy loss simulation in Geant4?

Adjustment of simulation parameters

Electron spectra at different layers

Mean energy depositions

Slight deviations in proton spectra

Toy MC study to evaluate effect of deviations

2 kinds of proton events determine rejection:

events with statistical fluctuations leading to many tubes with high energies (→ toy MC)

- events with electron or pion creation (diffractive scattering, π^0 events), faked by beam contamination

Proton rejection and electron efficiency

Projected performance of PEBS-TRD

Conclusion

- Design study to build a balloonborne spectrometer to measure the cosmic-ray positron fraction, in the context of indirect search for dark matter
- Scintillating fibres with SiPM readout as key components, proof of principle established in testbeam at CERN in October 2006
- Proton rejection of O(1,000,000) can be achieved with ECAL and TRD
- Study of physics program ongoing (antiprotons, B/C, ...)

Anomaly in the positron spectrum? PEBS can answer the question!

