PEBS: Positron Electron Balloon

Spectrometer

Henning Gast I. Physikalisches Institut B RWTH Aachen

DPG07 - 6 March 2007

Introduction

Goal: Measure the cosmic-ray positron fraction with a balloon-borne spectrometer.

Motivation: Indirect search for dark matter.

Requirements:

- Large geometrical acceptance:
 - >1000 cm²sr for 20-day campaign
- Excellent proton suppression of O(10⁶)
- Good charge separation
- Payload weight < 2t
- Power consumption < 1000W

Prospective performance of PEBS detector

PEBS design overview

Henning Gast

•

٠

PEBS design overview

Balloons

Henning Gast • DPG 07 - 6 March 2007 • p 6/16

Tracker layout

tracker module

readout of SiPMs by dedicated VA chip

material budget: 12% X0 (6% X0 tracker + 6% X0 TRD)

16x1 silicon photomultiplier, strip width 380 μm need 32x1, 250μm strip width

Henning Gast

DPG 07 - 6 March 2007

p 7/16

PEBS fibre tracker testbeam setup

Henning Gast

DPG 07 - 6 March 2007

p 8/16

SiPM: example of a MIP spectrum

Fibre coordinates in beam telescope

Henning Gast • DPG 07 - 6 March 2007 •

ECAL shower

Henning Gast

DPG 07 - 6 March 2007

p 11/16

ECAL proton rejection and energy resolution

Simulated 40000 positrons and 1700000 protons

TRD design

TRD superlayer in G4 simulation

Tasks: proton suppression and tracking in non-bending plane

single TRD module

2 x 8 layers of fleece radiator, TR x-ray photons absorbed by Xe/CO2 mixture (80:20), in 6mm straw tubes with 30 μ m tungsten wire Design equivalent to AMS02 space experiment

AMS02 TRD octagon integrated at RWTH Aachen workshop

Henning Gast • DPG 07 - 6 March 2007 • p 13/16

TRD performance: positron/proton separation

Background contributions

40 km altitude: 3.7 g/cm² remaining atmosphere

Conclusion

- Design study to build a balloon-borne spectrometer to measure the cosmic-ray positron fraction, in the context of indirect search for dark matter
- Scintillating fibres with SiPM readout as key components, proof of principle established in testbeam at CERN in October 2006
- Proton rejection of O(1,000,000) can be achieved with ECAL and TRD
- Design study with large acceptance to increase existing data by two orders of magnitude
- Expected amount of data from running experiments can be exceeded by an order of magnitude

PEBS detector components

Henning Gast • DPG 07 - 6 March 2007

• p 17/16

Magnet design

Rectangular area for detectors with axis perpendicular to the magnetic field

Helmholtz coils inside here

ISOMAX magnet (1998) flown on high-altitude balloon

Concept Cryostat View for Vapour Cooled Shield and Coil Design 5.

Magnet design by Scientific Magnetics for superconducting pair of Helmholtz coils in He cryostat, mean field 1 Tesla, opening 80x80x80 cm³, weight: 850kg

Henning Gast • DPG 07 - 6 March 2007 • p 18/16

Tracker readout scheme

light collection in scintillating fibre in Geant4 simulation

fibre module front view, with SiPM arrays on alternating sides

16x1 silicon photomultiplier, strip width 380 μ m need 32x1, 250 μ m strip width

4x1 readout scheme (column-wise) with weighted cluster mean better spatial resolution than pitch/ $\sqrt{12}$, depending on p.e. yield

Χ

total power consumption (~50000 channels) of tracker: 260 W

Henning Gast • DPG 07 - 6 March 2007 • p 19/16

PEBS testbeam MC

Henning Gast

DPG 07 - 6 March 2007

p 20/16

Spatial resolution vs angle of incidence

Tracker performance: Momentum resolution

Muon momentum resolution from G4 simulation using testbeam parameters, $d = 250 \mu m$, B=1T

$$\frac{\sigma_p}{p} = \sqrt{a^2 + (b \cdot p)^2}$$

Henning Gast • DPG 07 - 6 March 2007 • p 22/16

Tracker performance: Angular resolution

angular resolution

median values from angular resolution projections

ECAL layout

8 superlayers of ten layers of lead-scintillating fibre sandwich, with alternating orientation 1mm lead fibre: 1mm height, 8mm width, read out by SiPMs 14.3 X0 in total, ECAL weight: 550 kg

•

ECAL performance

Example event

Henning Gast DPG 07 - 6 March 2007 p 26/16

Intrinsic limits on rejection

intrinsic resolution limited by high-energy π^0 production in front of or in first layers of ECAL

Henning Gast • DPG 07 - 6 March 2007 • p 27/16

Intrinsic limits on rejection (2nd example)

intrinsic resolution limited by high-energy π^0 production in front of or in first layers of ECAL

TRD performance: boron / carbon

Henning Gast

DPG 07 - 6 March 2007

p 29/16

•

TRD performance: antiproton/electron separation

Henning Gast • DPG 07 - 6 March 2007 • p 30/16