Indirect dark matter search with the balloon-borne PEBS detector

Henning Gast I. Physikalisches Institut B RWTH Aachen

DPG08 – Freiburg – 7.3.2008

Introduction

Goal: Measure the cosmic-ray positron fraction with a balloon-borne spectrometer.

Motivation: Indirect search for dark matter. Popular scenario: WIMP annihilation in Galactic halo.

Requirements:

- Large geometrical acceptance:
 - >1000 cm²sr for 20-day campaign
- Excellent proton suppression of O(10⁶)
- Good charge separation
- Payload weight < 2t
- Power consumption < 1000W

Prospective performance of PEBS detector

Henning Gast • DPG 08 - 7.3.2008

p 3/13

PEBS design overview

Tracker: Scintillating fibres (d=250 μ m) with Silicon Photo-Multiplier (SiPM) readout; power: 260W

Solar panels: power for subdetectors, communications, data handling ~600 W

PEBS design overview

mSUGRA scan

Supersymmetry provides most popular DM candidate: the neutralino χ

Goal:

Assess constraints on mSUGRA parameter space from currently available data and improvements expected from PEBS.

mSUGRA parameters:

- m₀ soft SUSY breaking scalar mass parameter at GUT scale
- m_{1/2} soft SUSY breaking fermionic mass parameter at GUT scale
- tan β ratio of Higgs vacuum expectation values
- A₀ trilinear scalar coupling at GUT scale (set to zero)
- sgn μ sign of Higgs mass parameter (set to +1 (muon magn. moment))
- + m_{top} top quark mass

roughly 3.8 million models scanned

Tools:

ISAJET 7.75: solution of RGEs DarkSUSY 4.1: signal fluxes, cosmological and other observables MicroMEGAS 2.0: additional observables, cross-check GALPROP 50p: model of cosmic-ray propagation and secondary production

all linked into one executable (only one call of ISAJET), considerable effort because of Fortran limitations

Henning Gast

DPG 08 - 7.3.2008

p 6/13

Relic density constraint for different m_{top}

2000 9 /1800 E 2000 9 1800 2 8 0 2000 m_{top} - 2σ m_{top} 1600 $m_{top} + 2\sigma$ 1600 1400 1400 1200 1200 1000 1000 800 800 600 600 m_{top} - 2σ 400 400 m_{top} 200 $m_{top} + 2\sigma$ 200 00 100012001400160018002000 200 400 600 800 $m_{1/2}$ / GeV 200 400 800 1000 1200 1400 1600 1800 2000 600 $m_{_{1/2}}$ / GeV $\tan \beta = 20$ $\tan \beta = 50$

 $\Omega_{v}h^{2}$ with coannihilations

Region allowed by relic density constraint (CMB+large scale structure) depends strongly on tan β and m_{top}.

Tevatron: $m_{top} = 170.9 \pm 1.86 \text{ GeV}$ PDG: $\Omega_{nbm} h^2 = 0.106 \pm 0.008$

Henning Gast •

DPG 08 - 7.3.2008

Positron fraction and boost factors

Antiprotons and diffuse gamma-rays

Preferred region from current knowledge

Positron fraction χ^2

Henning Gast • DPG 08 - 7.3.2008 • p 11/13

Projected constraints on mSUGRA parameter space

Henning Gast DPG 08 - 7.3.2008

Conclusion

- Design study to build a balloonborne spectrometer to measure the cosmic-ray positron fraction, in the context of indirect search for dark matter
- Extensive scan of mSUGRA parameter space: present data show preference for m_{1/2} <~600 GeV
- Corresponding neutralino masses are favourable for upcoming positron experiments
- PEBS data will greatly enhance our knowledge about dark matter, as well as about cosmic-ray propagation

Anomaly in the positron spectrum? PEBS can answer the question!

Impact of **ACDM N-body simulations**

B/C-ratio

B/C ratio: important test for propagation models, good description by both Galprop models (conventional vs plain diffusion)