

AMS-02 ACC

Thomas Kirn RWTH Aachen University CERN, November 28th Th. Kim

AMS-02 – Anti Coincidence Counter (ACC)

The ACC surrounds the silicon tracker inside the magnet. It rejects particles that leave or enter AMS-02 through inner shell of the magnet \rightarrow protection against misidentification of matter nuclei as antimatter nuclei.

Requirements:

- High detection efficiency (0.9999)
- operational in high magnetic field
- fast response for trigger

AMS-02 – Anti Coincidence Counter (ACC)

AMS-02 ACC Principle

Scintillator Panel:	Bicron BC414 (826.5 x 230 x 8 mm ³)
Wavelength Shifting Fiber (WLS):	Kuraray Y-11(200)M
Clear Fiber (CLF):	Toray PJU-FB1000
Photomultiplier (PMT):	Hamamatsu R5946

AMS-02 ACC without Vacuum Case

Panel: Bicron BC414 WLS: Kuraray Y-11(200)M CLF: Toray PJU-FB1000 PMT: Hamamatsu R5946

AMS-02 ACC Scintillation panel

16 FM Scintillating Panels and 4 FM-Spare Scintillating Panels were produced following a procedure:

1.) 74 Grooves were milled into the scintillation panels:

7

AMS-02 ACC Scintillaton Panel machining

1.) Groove milling into the scintillation panels:

AMS-02 ACC Scintillaton Panel machining

1.) Groove milling into the scintillation panels:

- 2.) Optical inspection of scintillation panels
- 3.) Preparation of tongue, groove and frontfaces
- 4.) WLS-Fibers placed into grooves after warming WLS-Fibers to avoid defects

- 5.) Optical inspection of WLS-fibers for defects after placing into grooves
- 6.) Storage for thermal equilibrium at chemical room
- 7.) Glueing of WLS-Fibers and Scintillating Panels with BC-600
- 8.) Curing of glue @higher temperature using infrared lamps

- 9.) Bundling of WLS-Fibers into 2 Bundles at each side of scintillating panel
- 10.) Glueing of 2 UV-LEDs into scintillating panel
- 11.) Mounting of fiber bending protection
- 12.) Lighttight packaging of WLS-Fiber bundles in Viton tubes

AMS-02 ACC

- 13.) Mounting of optical connector at end of WLS-Fiber bundles
- 14.) Wrapping of scintillator panel with reflective aluminized mylar foil

- 15.) Lighttight wrapping of scintillating panel with black cloth
- 16.) Lighttight glueing of scintillating panel with Nusil glue
- 17.) Cutting of overlength and polishing of WLS-fibers

AMS-02 ACC Scintillator Modules: Lightyield-Measurement, Setup

Test with atmospheric muons & pulsed LED-signals

The 16 FM and 4 FM-Spare Scintillation Panels tested with atmospheric muons:

The Most-probable-value of the typical Landau-Distribution corresponds to the number of photo-electrons detected by two reference PMTs mounted to the AMS-02 counter.

All AMS-02 scintillation panels were tested with the same reference PMTs!

Calibration:

A LED-pulse create a typical Gaussiandistributed signal in the AMS-02 counter and can be used to calibrate the detected number of photo-electrons .

AMS02 ACC scintillation panel

AMS-02 ACC Scintillator Modules: Lightyield-Measurement, Calculation of photo electron number

AMS-02 ACC Scintillator Modules: Lightyield-Measurement, Result of photo electron number measurement

AMS-02 ACC Scintillator Modules: Space Qualification

The 16 FM and 4 FM-Spare Scintillation Counters are made out of the same material as the AMS-01 ACC scintillation counter. The space qualification was carried out for the AMS-01 ACC scintillation counters and is therefore done by similarity for the AMS-02 ACC scintillation counters.

Vibration with 6.8g with AMS-01 ACC panels AMS-01 ACC panels consist of the same Material as AMS-02 ACC panels

ACC1 + PMT 3

12:31:10 Thu Feb 13 1997

AMS-02 ACC

Y - Achse Random AVT_6.79 gms 9702_05 AMS ACC 1 Data Review Name: 9702_05_AMS.001

AMS-02 ACC Scintillator Modules: Space Qualification

AMS-02 ACC Scintillator Modules: Space Qualification

Lightyield-Measurement of AMS-01 ACC panels before and after space qualification tests. The AMS-01 ACC panels consist of the same material as AMS-02 ACC panels

No significant differences between the light output performance before and after the space qualification tests.

AMS-02 ACC Optical Couplings: WLS Fiber ↔ Clear Fiber ↔ PMT

AMS-02 ACC Clear Fiber

AMS-02 ACC PMT: Hamamatsu R5946

ACC PMT Construction Detail (Variance from TOF design)

AMS-02 ACC PMT: Space Qualification @ RWTH Aachen

AMS-02 ACC PMT: Space Qualification @ RWTH Aachen

Vibration teststand

No significant changes observed !

AMS-02 ACC PMT: Space Qualification @ RWTH Aachen

AMS02 ACC Photomultiplier (PMT): Space Qualification Tests, Measurement of # photo electrons

Test with atmospheric muons & pulsed LED-signals for 3 different PMT HVs

AMS02 ACC scintillation panel nr. 19

AMS02 ACC Photomultiplier (PMT):

Results after Space Qualification Tests (TVT & Vibration)

AMS02-ACC System Test Results:

(FM scintillation panel, clear fiber cable and PMT)

Panel	Cable A	РМТ А	MOP A 1900V (adc counts)	number of photo electrons A	Cable B	РМТ В	MOP B 1900V (adc counts)	number of photo electrons B
13	18 short	19	107	15	7 short	7	70	13
12	18 long		127		7 long			
19	2 short	18	76	14	11 short	11	60	16
16	2 long				11 long			
5	1 short	1	46	17	17 short	17	69	18
4	1 long				17 long			
9	8 short	8	44	16	6 short	6	53	14
7	8 long				6 long			
11	15 short	15	44	16	3 short	14	45	16
14	15 long				3 long			
10	10 short	10	44	16	9 short	9	41	15
6	10 long				9 long			
8	13 short	13	43	17	14 short	21	33	17
15	13 long				14 long			
18	12 short	12	27	17	4 short	4	36	17
20	12 long		37	17	4 long			17

3	19 short	2	41	14	21 short	3	40	16
17	19 long				21 long			

red: flight; blue: flight spare

ACC PMT: 4 Hamamatsu R5946 in Box

ACC PMT: 4 Hamamatsu R5946 in Box

AMS02-ACC System Test Results: PMT Boxes: Order of PMTs and clear fiber cables

WAKE B BOTTONSector 8, Z-

RAM B BOTTO Sector 24, Z-

AMS02-ACC System Test Results: Positioning of scintillation panels

35

AMS-02 ACC Pre-Integration: PMT-Boxes & Clear Fiber Cables

=7=

21

à.

AMS-02 AC

SWF

and,

Th. Kirn
AMS-02 Pre-integration Data-taking with Cosmic Muons

Inefficiency study of ACC with TRD and tracker tracks:

Extrapolate clean single tracks and determine ACC inefficiency as function of position!

 \rightarrow Inefficiency = 1.5^{+2.3}_{-1.1} ·10⁻⁵ < 0.9999

AMS-02 ACC Integration: PMT-Boxes & Clear Fiber Cables

AMS-02 ACC Integration: Scintillator Modules

Fh. Kirn

AMS-02 ACC

24

AMS-02 ACC Integration: Scintillator Modules

AMS-02 ACC Integration: Optical Connector

AMS-02 ACC Integration: Support Cylinder

0 0

2

-

* 5

.

0

0

2 2 2

AMS-02 ACC Readout

	SFET2a	SFET2b		SFET2c	SFET2d	
SDR2	SFET2	SFET2	SPT2	SFET2	SFET2	SFEA2
BO			EI			5 [⊙]
8	O CPS	Ch5	SFECh	st 🕥	O GPS	€ ⊙
8	€ O	Ch4	828	⊙ 8	O ch	AB
B3			TB			
8 II			a B			
18			CPTA			
AO	O CP3	O ch3	8ZA	O CH3	O CH3	
A1	O CH2	O CH2	e de la companya de la company	O CH2	сю СЮ	A
A2	O CH	€ CH	SHEC	O CH	O CH	⊙ cF
A3			ETA 			¥⊙
Slot 1	Slot 2	Slot 3 AMS-0	Slot 4 2 AC	Slot 5 C	Slot 6	Slot 7

AMS-02 ACC Readout

AMS-02 ACC Readout

AMS-02 ACC Integration done

n. Kiri

AMS-02 – Test Beam H8 CERN

50

AMS-02 ACC: Inefficiency Measurement in Test Beam

Event Selection

Requirements:	7661060
- Trigger from Upper TOF	5310522
- Single reconstructed TRD-Track	2994861
- TRD-Track matching beam config.	705926
- matching TOF-hit positions	528643
- min. 2 matching TrCluster-hits	
on first 3 layers below TRD	415966
- linear fit / check for chi ²	324826
- track predicts ACC-hit	322884

52

→ 322,884 events after all cuts

AMS-02 ACC: Inefficiency Measurement in Test Beam

AMS-02: 2010 KSC Cosmic Data Period → ACC Stability

AMS-02 2010 KSC Cosmic Data Period

- TRD-track for prediction of ACC-hit
- only the center of panel is taken into account

AMS-02 2010 KSC Cosmic Data Period

AMS-0

AMS-02 2010 KSC Cosmic Data Period

02/09 09/09 16/09 23/09 30/09 07/10 14/10 21/10 28/10 04/11 11/11

DateTime

DateTime⁵⁷

02/09 09/09 16/09 23/09 30/09 07/10 14/10 21/10 28/10 04/11 11/11

DateTime

⁻h. Kirn

AMS-02 ACC Slow Control and Data Monitoring

RNTHAA

•58

AMS-02 ACC

AMS-02

Th. Kirn

TRD/ACC/TAS-Standard Shift

• ACC is mounted inside PM surrounding inner tracker planes to serve as a veto.

• ACC consists of 8 cylindrical sectors with a radius of 55 cm from the center of Z-axis, 83 cm in height and readout by 16 PMTs. Each sector is composed of two scintillator panels optically linked to upper one and lower one PMT.

• Upper and Lower 4 x 4 PMTs are grouped and housed into 4 PMT boxes (2 x Wake $\pm Z$, 2 x RAM $\pm Z$) mounted on vacuum case.

• Charge threshold is set the same 25 ADC in all LT/HT/SHT values.

• Monitor calibration (pedestal and its width), configuration (HV, threshold, ...) and scaler from JLV1 status

Monitor ADC and TDC during DAQ

TRD/ACC/TAS-Standard Shift

List of ACC Programms:

- ACC Status Monitor (ACC-S)
- ACC Slow Control Monitor (ACC-M)
- ACC Data Monitor (ACC-data-M)

- Check: ACC slow control data and data monitor (ACC-M, ACC-data_M)
- Check: ACC scaler rates, HV-settings, Temperatures in range (ACC-S)

Emergency Actions from Shifter

ASK for Commanding

1. Temperature PMT-Box out of Range

LEAD: Turn ACC-HV off (Operational: -30 C

2. Scaler rate to high (>35000 outside SAA and polar regions)

3. Scaler rate zero -> HV off

- -> cooperate with TOF-Shifter!
- -> make an entry in E-Log: TOF
- -> Phone ACC-expert!

ACC-Monitoring Program

1. ACC Status Monitoring (ACC-S)

Check HV, Temperature and Scaler with operating ranges

2. ACC Housekeeping Monitoring (ACC-M)

JLV1 Scaler, ACC Calibration (Ped, Width), ACC Configuration (HV, Trigger Threshold)

3. ACC Data Monitoring (ACC-data-M)

Charge signal mean and ist running median, TDC mean, Temperatures (SFEA2, PMT boxes, Veto trigger rate w.r.t LV1)

ACC-S

ACC-M@pcpoc61. Ch.Chung & T.Kirn 20110415 ACC-M File 1 0 0 1 1 7 0 6 1 File 0021 474 Directory CLEAR **Time Scale** Time 20110527 20:02:41 7 Time 20110611 15:22:49 PRINT 6 h/div /Data/BLOCKS/SCIBPB/RT First ACC-M: 200 Set Directory to 300 200 200 100 100 100 /Data/BLOCKS/SCIBPB/RT 100 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 S 4: Pedestal S0/0+ Scale 100 S 6: Pedestal S2/W- Scale 100 S 7: Pedestal S3/R- Scale 100 5: Pedestal S1/R+ Scale 100 Second ACC-M: 2000 2000 2200 2200 Set Directory to 1950 1800 2000 2000 /Data/BLOCKS/HKLR/CDP 1800 1900 1600 1800 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 S 12:HV S0/0+ 20-23 Scale 50 S 13:HV S1/R+ 20-23 Scale 200 S 14:HV S2/W- 20-23 Scale 200 S 15:HV S3/R- 20-23 Scale 200 200 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 S 8: Width S0/0+ Scale 100 S 9: Width S1/R+ Scale 100 s 10:Width 52/W-Scale 100 s 11:Width S3/R-Scale 100 26 26 26 24 24 24 22 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 21:01 03:01 09:01 15:01 21:01 2.52/0- 1.T/BT/SBT Scale 20.SD/0+ LT/HT/SHT Scale Scale 23-S3/R- LT/ET/SET Scale 0 0 ACC-M@pcpoc61 Ch.Chung & T.Kirn 20110415 ACC-M Directory File 📘 0 0 2 4 4 3 7 🔟 File 0038 **Time Scale** 298 CLEAR /Data/BLOCKS/HKLR/CDP Time 20110527 21:51:52 🖬 Time 20110611 20:26:4 3 h/div 10000 10000 -10000 10000 5000 5000 5000 5000 11:27 14:27 17:27 20:27 23:22 11:27 14:27 17:27 20:27 23:27 11:27 14:27 17:27 20:27 23:27 11:27 14:27 17:27 20:27 23:27 S 0: Scaler SO/@+ Scale 5000 S 1: Scaler S1/R+ Scale 5000 S 2: Scaler S2/0-Scale 5000 S 3: Scaler S3/R-Scale 5000 15 Th. Kirn AMS-02 AGO 07:47 10:47 13:47 16:47 19:47 07:47 10:47 13:47 16:47 19:47 07:47 10:47 13:47 16:47 19:47 16:Temp PMT W+ 17:Temp PMT R+ 18:Temp PMT W-S 19: Temp PMT R-Scale 5 Scale Scale

66

Scalar rates of 16 ACC PMTs

Black (SFEA input channel 0) Green (SFEA input channel 2) **Red** (SFEA input channel 1) **Blue** (SFEA input channel 3)

Scalar rates of 16 ACC PMTs during Cosmic Data taking at KSC

Black (SFEA input channel 0) Green (SFEA input channel 2) **Red** (SFEA input channel 1) Blue (SFEA input channel 3)

69

Calibration: Pedestal & Pedestal Width of 16 ACC PMTs

High voltage settings of 16 PMTs of S0, S1, S2 and S3-crate

WAKE -Z

Red (SFEA input channel 1)

Blue (SFEA input channel 3)

SHV-brick	S0	S1	S2	S3
Ch20	1975.4 V	1795.7 V	2093.2 V	2042.0 V
Ch21	1923.5 V	2014.6 V	2191.6 V	2157.1 V
Ch22	1972.4 V	1952 V	2048.5 V	2018.6 V
Ch23	1936.5 V	1719.4 V	2007.0 V	1900.8 V

RAM +Z

Th. Kirn

WAKE +Z

Black (SFEA input channel 0)

Green (SFEA input channel 2)

RAM -Z

Discriminator threshold settings; all register values set to 25 (Maximum) (artificial spread to visualize 4 points)

Black (SFEA input channel 0) Green (SFEA input channel 2) **Red** (SFEA input channel 1) **Blue** (SFEA input channel 3)

Mean ADC values for each of the 4 PMTs of S0, S1, S2 and S3 crate Calculated out of 500 events, pedestal corrected

Black (SFEA input channel 0) Green (SFEA input channel 2) Red (SFEA input channel 1) Blue (SFEA input channel 3)

AMS-02 ACC

Median ADC values for each of the 4 PMTs of S0, S1, S2 and S3 crate Median value range 700 – 1000, ADC value range 300 – 2000, Running value: ADC value above median \rightarrow median increase by 1/8 ADC value below median \rightarrow median decrease by 1/8

S0	S1	S2	S3
WAKE +Z	RAM +Z	WAKE -Z	RAM -Z

Black (SFEA input channel 0) Green (SFEA input channel 2) Red (SFEA input channel 1) Blue (SFEA input channel 3)

AMS-02 ACC

Black (SFEA input channel 0) Green (SFEA input channel 2) **Red** (SFEA input channel 1)

Blue (SFEA input channel 3)

Global DALLAS Temperature Sensor on each ACC PMT box

JLV1-trigger: Percentage of events which get a veto-flag
ACC Veto rate every 500 JLV1 trigger, depending on JLV1 trigger setting
(2 out of 4, 3 out of 4 (standard), 4 out of 4 or ECAL trigger)

Black (SFEA input channel 0) Green (SFEA input channel 2) **Red** (SFEA input channel 1) **Blue** (SFEA input channel 3)

Scaler rising; Saturation at 32k, Check: HV, threshold, Trigger config. Due to noisy PMT \rightarrow check corresponding ADC spectrum! Lower HV if necessary

Screen 3 Right!

Th. Kirn

AMS-02 ACC

87