Cryogenic Tests of Time of Flight and Scintillating Fiber Tracker Prototypes for the AMS-100 Experiment

Thomas Kirn C. H. Chung, J. Deiters, D. Fehr, W. Karpinski, D. Louis, Th. Oeser, S. Schael, Th. Siedenburg, M. Wlochal

presented at 17th Vienna Conference on Instrumentation, 19th February, Vienna

New Physics in Cosmic Rays? AMS-100

Operating on the ISS	since May 2011
Weight:	7 t
Permanent Magnet:	B = 0.15 T
Acceptance:	0.1 m ² sr
MDR:	2 TV
Calorimeter:	17 X₀, 1.7λ
Detected Cosmic Ray	Events: 250 Billio

Anti-Deuterons: sensitive probe for New Physics in Cosmic Rays

20

 \rightarrow Need spectrometer with higher acceptance than AMS-02: AMS-100

Weight:	40 t
Thin HTS Solenoid: B = 0.5 T	
Acceptance:	100 m ² sr
MDR:	>50 TV
Calorimeter:	70 Χ ₀ , 4λ

AMS-100: Cosmic Ray Physics at Lagrange Point 2

- AMS-100 operated at Sun-Earth Lagrange Point 2 and passively cooled with a sun shield
 - Subdetectors at **190 K** in switched-on state
 - Subdetectors at **100 K** in switched-off state

 \rightarrow System tests required under operating conditions at L2:

- Survival at 100 K
- Operation at 190 K
- Operation in vacuum

AMS-100 Detector

40 t
B = 0.5 T
100 m ² sr
>50 TV
70 X ₀ , 4 λ
15 kW
2 MHz
els: 8 Million
10 years

1.0

1.5

Outer-Sup Tube

x [m]

0.0

Inner-Support

Tube

. Physikalische

0.5

AMS-100: Time of Flight System (ToF)

2.5

- ToF provides the trigger and measures $oldsymbol{eta}=
 u/c$
- Z measurements from the signal height
- Desired ToF Single Counter time resolution: 20 ps
- Current ToF prototypes: ~ 40 ps

Operation principle of AMS-100 ToF:

- Scintillator rods with SiPMs operating at 200 K
 - Scintillator dimensions 90 x 25 x 6 mm³
- Similar to the PANDA Barrel TOF
 - \longrightarrow Reached 50ps resolution, but matching factor \approx 0.25
- $\rightarrow\,$ full coverage of the frontface of scintillators, k=1
- \rightarrow serial connection of SiPM cells \rightarrow reduce C _{SiPM}

AMS-100: Time of Flight System (ToF)

AMS-100: ToF Prototypes: System Test at low temperatures

- ToF prototype in air-tight box submerged in liquid nitrogen
- Radioactive source heated (only specified up to 233 K)
- 9 temperature sensors in the box •
- Flushing with dry air to avoid condensation and ice
- Bias-voltage corrected for temperature, so the over-voltage is constant!

AMS-100: ToF Prototypes: Signal Shape vs Temperature: Slow Decay Time

DÍ

AFBR-S4N66C013

D2 000 D3

 $\tau_{\rm slow}$

 $294\,\mathrm{K}$

 $205\,\mathrm{K}$

 $77\,\mathrm{K}$

400

D4

Poly-Si quench resistor

S13370-6075CN **D1** D4

k = 70 %

Metal quench resistor

S13370-6075CN

10

AMS-100: ToF Prototypes: Signal Shape vs Temperature: Slow Decay Time

11

AMS-100: ToF Prototypes: Signal Shape vs Temperature: Time Resolution

Poly-Si quench resistor

S14161-6050HS-04

I. Physikalisches

ToF Prototypes can be operated at 77 K

- σ_t increases at low temperatures
- at 190 K:
 - S14160-6050 HS: $\sigma_t = 43 \text{ ps}$
 - S14161-6050HS-04: $\sigma_t = 39$ ps •

Metal quench resistor

S13370-6075CN *k* = 70 %

AMS-100: ToF Prototypes: System Test in Vacuum

I. Physikalische

First & Fast Measurement of R and Z; MDR: 3TV

Provides 2x6 Measurements with 40 μ m resolution

(using fiber mats made out of 6 layers of 250µm thick fibers)

Signal

Calculated

AMS-100: Scintillating Fiber Tracker (SciFi) "Prototype"

LHCb-SciFi-Tracker:

10,000 km of fibres \rightarrow 1152 SciFi mats \rightarrow 144 Modules \rightarrow 12 Stations \rightarrow 340 m² total area

SciFi tracker R&D for AMS-100 and LHCb Upgrade II

Teststand for the readout of cryogenic cooled SiPMs optical connected to SciFi fiber mat

Summary & Outlook

- AMS-100 ToF prototypes (EJ-228 and S14161-6050HS-04) currently achievable minimal time resolution at 190K: $\sigma_t = 39 \text{ ps}$
- Test scintillator materials (EJ and BC) and optimize scintillator geometry (width and thickness) to reach design single counter time resolution of 20 ps

 SciFi: R&D for AMS-100 and LHCb upgrade II: Light yield increased for lower temperatures (14% @ 108 K)
 talks "The LHCb Mighty tracker" by Oscar Augusto De Aguiar Francisco and "Microlens-enhanced SiPMs for the LHCb SciFi tracker Upgrade II: update and recent results" by Federico Ronchetti

Backup

AMS-100: ToF Prototypes: Scintillator thermocycling

I.PI

I. Physikalisches

EJ-228 can be thermocycled, elevated temperatures lead to crazing

AMS-100: ToF Prototypes: Scintillator in Vacuum

AMS-100: ToF Prototypes: SiPMs thermocycling

S14160-6050HS

After slow cycling

Before cycling

S14160-6050HS can be thermocycled without any change in performance

AMS-100: ToF Prototypes: Signal Shape vs Temperature: Amplitude

Poly-Si quench resistor

Metal quench resistor

AMS-100: Scintillating Fiber Tracker (SciFi)

6 Layers SciFi-Mat (0.25mm Fibers) @ temperature range 77 K - 253K

I.PI I. Physikalisches

Light yield before and after cryogenic temperatures

 \rightarrow no significant changes in performance

Light yield of 6 Layers SciFi-Mat with 250µm fibers measured at lower temperatures

@ cryogenic temperatures to be done