AMS TIM and General Meeting Status of AMS TRD

Th. Kirn I. Phys. Institute B **RNTH** Physics AC-I

Houston JSC, 30th October 2002

1.)	TRD Production & Testbeam	Th. Kirn	50 min
2.)	TRD Electronics $\&$ Testbeam	W. deBoer	20 min
3.)	TRD Box S	R. Becker	15 min
4.)	TRD Box C	P. Fischer	15 min
5.)	TRD Manifolds	J. Burger	15 min
/		0	

TRD Production Status

S. Fopp, K. Lübelsmeyer, W. Karpinski, Th. Kirn, S. Schael G. Schwering, Th. Siedenburg, R. Siedling, A. Schultz von Dratzig

2.) Straw Module Status

1.) Support Structure

3.) Testbeam

Octagon panels: Slit cladding: CFC Inserts to protect Straw Modules 90° panels ready

 45° panels to be done

3

Lower HC Plate

5

TRD Support Structure Reinforcement Rings, Milling @ IPT

- Upper Support Plate
- \bullet Upper Reinforcement Ring \surd
- Bulkheads

- \bullet Octagon panels \surd
- Grid (Cable & Tube Support)
- \bullet Lower Reinforcement Ring \surd
- \bullet Lower Support Plate \surd
- M-Structure

45° Gas Connection With Chamber Fixation View From Outside

UFE - 45 S

View From Outside

9

TRD Straw Module Status

TRD Modules Production Status

1. 8 modules for long term test stand produced

2.	4 modules for space qualification produced
	will be tested next week

3. 4/328 modules for AMS-02 TRD produced will be tested next week continuous production has started

AMS TIM Meeting, CERN, May 2002

Measurements					
Leak Rate q (He) $10^{-4} \frac{mbar}{s}$	Gasgain Ar/CO ₂ HV: 1350 V Flow: 1 1/h				
2.4	5503 ± 64				
2.1	5336 ± 53				
2.0					
2.3	5344 ± 76				
2.2					
2.0	5541 ± 76				
2.6	-				
2.0	5531 ± 117				
	leasurements Leak Rate q (He) 10 ⁻⁴ mbar 2.4 2.1 2.0 2.3 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.0 2.0 2.0 2.0 2.0				

11

Straw Module Status

- 8 Longterm Straw Modules L=1549 mm, $(q \approx 2 \cdot 10^{-4} \frac{\text{mbar}}{\text{s}} \text{ (He)})$
 - Leaky gas connectors
- 4 Space Qualification Straw Modules L=1258, 1282, 1306, 1330 mm $(q \approx 2 - 5 \cdot 10^{-4} \frac{\text{mbar}}{\text{s}} \text{ (He)})$
 - Leaky gas connectors
 - Leaks at underside of endpieces
 - Leaks along straws
- 3 TRD Flight Straw Modules L=1540, 1564, 1588 mm $(q \approx 1 \cdot 10^{-4} \frac{\text{mbar}}{\text{s}} \text{ (He)} < \text{diffusion rate})$
 - Leaky gas connectors
 - Leaks at underside of endpieces
 - Leaks along straws

Gas Connectors

Double-O-Ring connector

Stainless Steel Tube Fitting

Leak rate:
$$q = 1 \cdot 10^{-6} \frac{l \cdot mbar}{s}$$
 (He)

Leak rate: $q = 1 \cdot 10^{-6} \frac{l \cdot mbar}{s}$ (He)

Gas Connectors, Stainless Steel Tube Fitting Vibration Test I + Thermo Vacuum Test + Vibration Test II

Thermovacuum Start 27.06.02 11:10:15

Leak rate before + after: $q = 1 \cdot 10^{-6} \frac{l \cdot mbar}{s}$ (He) \Rightarrow Test with Straw Modules

Straw Module Endpieces

Old Design:

New Design:

Leak rate: $q = 3 \cdot 10^{-5} \frac{l \cdot mbar}{s}$ (He) Space qualified? \Rightarrow Thermo Vacuum Test

Straw Module Endpieces Thermo Vacuum Test

Thermovacuum Start 27.06.02 11:10:15 Temperature (°C) 05 05 09 Ch.12 Control Ch.01: Polycarbonate EP 1 0 Ch.02: Polycarbonate -20 EP 2 -40 20 40 60 80 100 120 0 Time (hour) Leak rate before + after: $q = 3 \cdot 10^{-5} \frac{l \cdot mbar}{s}$

 $\Rightarrow \mathsf{Test} \; \mathsf{Straw} \; \mathsf{Module}$

Space Qualification

• 5 Straw Modules \rightarrow Leaks along straws L=376, 400, 400, 424, 448mm

Test programm:

Vibration test, Thermo vacuum test

 \rightarrow Eigenfrequencies, Leak rate, gas gain

Mod.	q_{He}	$q_{He,diff}$
No.	$10^{-5} \frac{l \cdot mbar}{s}$	$10^{-5} \frac{l \cdot mbar}{s}$
		Ŭ
376	2.90	2.58
400	13.3	2.68
400	5.08	2.68
424	3.04	2.77
448	3.11	2.85

Space Qualification, Vibration Test

Vibration-Test-Cycle:

- Sine Sweep 0.5g (10-2000Hz)
- \bullet Random Spectrum $a_{\rm RMS}=6.8g$
- Sine Sweep 0.5g (10-2000Hz)

Space Qualification, Vibration Test

Space Qualification, Thermo Vacuum Test

Space Qualification

Gas Gain Measurement in ArCO₂ (Mod4/02)

Space Qualification, Gastightness L=376, 400, 424, 448mm

Mod.	q_{He}	q_{He}	$q_{He,diff}$
No.	$10^{-5} \frac{l \cdot mbar}{s}$	$10^{-5} \frac{l \cdot mbar}{s}$	$10^{-5} \frac{l \cdot mbar}{s}$
	before	after	U U
376	2.90	3.83	2.58
400	5.08	4.89	2.68
424	3.04	3.57	2.77
448	3.11	3.83	2.85

Leaks along Straws, Parylene-C Coating @ Astrium L=376, 400, 424, 448mm with $9 \ \mu m$ Parylene-C

80 cm tank \rightarrow extension up to 2 m

Parylene-C Coating, Gastightness $V_{\text{CO}_2,\text{CF}_4} = 2000 \ \text{l} \rightarrow q_{\text{CO}_2,\text{CF}_4,\text{max}} = \frac{2000 \ \text{l} \cdot 1013 \ \text{mbar}}{1000 \cdot 86400 \ \text{s}} \cdot \frac{5}{500 \ \text{m}} = 23.5 \cdot 10^{-5} \frac{\text{l} \cdot \text{mbar}}{\text{s} \cdot \text{m}_{\text{Module}}}$ Safety factor = $\frac{q_{\rm CO_2, CF_4, max} \cdot L_{\rm Module}}{q_{\rm CO_2}} \cdot f_{\infty}$

Mod.	q_{He}	q_{CO_2}	$q_{CO_2,diff}$	Safety-	
No.	$10^{-5} \frac{l \cdot mbar}{s}$	$10^{-5} \frac{l \cdot mbar}{s}$	$10^{-5} \frac{l \cdot mbar}{s}$	factor	
		208 h	1400 h	CO_2	
376	2.90	-	-	-	before S.Q.
	3.83	-	-	-	after S.Q.
	-	4.0	0.70	2.9	9 μm PC
400	5.08	-	-	-	before S.Q.
	4.89	-	-	-	after S.Q.
	4.38	4.5	0.74	2.8	9 μm PC
424	3.04	-	-	-	before S.Q.
	3.57	-	-	-	after S.Q.
	-	4.0	0.78	3.3	$9 \; \mu m$
448	3.11	-	-	-	before S.Q.
	3.83	-	-	_	after S.Q.
	3.88	4.5	0.83	3.1	9 μm ΡC

Straw Module Gastightness

• Xe/CO₂ (80/20) Leak rate 3 single Straw Tubes L=1.3 m

Parylene-C Coating, Gasgain

Gas Gain Measurement in ArCO₂ (effect of Parylene C -Coating)

Testbeam

Upper Jigg \rightarrow Space qualification jigg, Modules coated with $9~\mu m$ Parylene-C

Lower Jigg \rightarrow EMI-Jigg, Old long space qualification modules non coated

Th. Kirn

Houston JSC, 30th October 2002

Testbeam T9-Area

 \rightarrow talk W. deBoer

Beamtest Setup / UFE Intercalibration

14 GeV T9 Protons Xe/CO₂ 1500V

Physics AC-I

28

Electron Spectrum DATA vs MC with Parylene-C

Houston JSC, 30th October 2002

AMS-TRD GEANT

Proton Rejection vs Electron Efficiency

Space Qualification with 9 μm Parylene-C coated Modules L=587, 611, 635, 659, 635 mm

before Parylene-C coating (november)

Mod.	q_{He}	$q_{He,diff}$	q_{CO_2}	$q_{CO_2,diff}$	Safety-
No.	$10^{-5} \frac{l \cdot mbar}{s}$	factor			
		0	110 h	1400 h	CO_2
587	4.17	3.37	5.5	1.08	4.2
611	4.18	3.46	5.5	1.12	4.4
635	4.23	3.54	5.5	1.17	4.6
659	5.21	3.63	7.5	1.21	3.5

Straw Module Gastightness, Alternative

• 4 +7 Longterm Straw Modules L=1549 mm, \rightarrow Leaks along straws ($V_{CO_2,CF_4} = 2000 \ l \rightarrow q_{CO_2,CF_4,max} = \frac{2000 \ l \cdot 1013 \ mbar}{1000 \cdot 86400 \ s} \cdot \frac{5}{500 \ m} = 23.5 \cdot 10^{-5} \frac{l \cdot mbar}{s \cdot m_{\text{Module}}}$)

Mod.	q_{He}	q_{CO_2}	Safety-	q_{CF_4}	Safety-
No.	$10^{-5} \frac{l \cdot mbar}{s}$	$10^{-5} \frac{l \cdot mbar}{s}$	factor	$10^{-5} \frac{l \cdot mbar}{s}$	factor
	U U	240 h	CO_2		CF_4
I	-	-	-	-	-
	27	15.2	3.1	-	-
	147	73.0	0.7	0.21	172
IV	56.8	31.1	1.6	0.82	44
1	21.6	-	_	9.72	3.7
2	15.3	-	-	0.53	68
3	13.4	-	-	0.10	361
4	14.8	-	-	0.10	361
5	14.3	-	-	0.60	60
6	14.2	-	-	0.56	64
7	13.2	-	-	0.52	69
diff.	6.9	2.82	12.7	0.17	212

AMS TRD GAS CF_4 vs. CO_2

ATLAS TRT	10 μ A/straw	CF_4	$+ \text{ O}_2\text{, }\text{H}_2\text{O} \rightarrow$	F & HF etching & Si deposition
AMS TRD	20 pA/straw		none in space	
	150 Hz G 3000			

Mixture	Xe/CO_2	Xe/CF_4
80/20 Volume	40/4 Kg	40/8 Kg
Diff. loss / 1000 d	300/300 g	300/26 g
$\frac{\Delta G}{G}/\Delta U$	1.0%/V	2.0%/V
HV @ 1000 mbar	1500 V	1585 V
HV @ 1250 mbar	1570 V	1620 V

Straw Module Production Status

Continous production has started

- TRD: 328 Flight Modules
- Flight Modules produced: 12 (2/d)
- Module chambers produced @ FVT: 48 (2/d)

TRD Status

TRD Time Schedule

