AMS02 TIM and General Meeting

Th. Kirn I. Phys. Institute RWTH Aachen

March, 7th 2001

- Straw-Module Production
- Radiators

Straw Module Production

Th. Kirn Th. Siedenburg

Straw Module Production

Production Process

FVT:

• glueing of 16 straws and stiffeners (cleanroom, 2 modules per day)

AC I:

- endpieces glued to straws (cleanroom)
- wire tensioning and crimping (cleanroom)
 - **SF**: signal feedthrough
 - WTM: wire tension measurement (eigenfrequency)
 - **PVT**: preview test (noise spectrum (HV, Ar/CO_2))
- straw module potting, HV-board mounting
 SF
- final potting
- operational tests
 - **ST**: serial-test, gas-tightness, dark current, corona
 - **GG**: gasgain, G(HV) (Xe/CO₂, Fe⁵⁵ TMS)
 - + subsample: X-ray wire position
 - + long term test: gasgain(flow, density, mixture) [in closed circuit]

AC I

AC I

WTM: Wire Tension Measurement $m = \frac{4L^2 f^2 \rho_l}{g}$

Quality Control:

Wire Tension: (100 ± 10) g

WTM: Wire Tension Measurement

Chamber 5

PVT: Preview Test

Measurement of counts above threshold (HV, Ar/CO_2)

Quality Control: has to be decided

PVT: Preview Test

PVT: Preview Test

6 Straw Modules parallel

Measurement of gas tightness, dark currents, corona

• over pressure burst test: p=2.5 bar

• gas tightness:
$$\frac{\Delta p}{\Delta t} \le 10^{-4} \frac{\text{mbar}}{\text{s}}$$

(p=2.0 bar, t=100 h)

• dark currents:

$$-I_{W}$$

– I_C

 \bullet Precalibration for all straws (Xe/CO_2) G(HV)

Quality Control:

- \bullet straw to straw variation < 10%
- \bullet module to module variation < 20%

GG: Gasgain Measurement

Gas Gain Measurement of Chamber 53 (Xe/CO₂) with ⁵⁵Fe

Gas Gain Measurement of Chamber 53 with $^{55}\mathrm{Fe}$

Gas Gain Measurement of Chamber 53 with ⁵⁵Fe

Th. Kirn 20

- 8 Straw-modules = 1 TRD gasgroup
- Measurement of G(HV, ρ , t)
- \rightarrow Degradation of gasgain

Radiators

Th. Kirn

Radiators

1) LRP 375 BK vlies (used by ATLAS)

- fibermaterial: Polypropylene
- fiber thickness 10 $\mu {
 m m}$
- density: $0.06 \frac{g}{cm^3}$
- prize: 26.00 $\frac{DM}{m^2}$
- cleaning with CH₂Cl₂
 Extraction 3 hours at normal conditions
- prize: 100 $\frac{DM}{m^2}$

2) Separet 405

- fibermaterial: Polyacryl
- \bullet fiber thickness 14 $\mu{\rm m}$
- density: 0.08 $\frac{g}{cm^3}$
- prize: 5.00 $\frac{DM}{m^2}$

1) + 2) manufacturer: Freudenberg Vliesstoffe KG 69465 Weinheim, Germany

NASA-Tests:

- ASTM E 595 (thermal vacuum test I)
 - outgassing, evaporation under vacuum (screening test, 24 h at 125 o C) LIMITS: TML $\leq 1.0\%$, CVCM $\leq 0.1\%$

TML: Total Mass Loss CVCM: Collected Volatile Condensable Material

- ASTM E 1559 (thermal vacuum test II)
 - outgassing, evaporation, sublimation and redeposition test,
 mass-loss as a function of time,
 mass-loss after 144 h

Deposition rate on nearby attached payloads:

LIMIT:
$$10^{-14} \frac{\text{g}}{\text{s} \cdot \text{cm}^2}$$

 \rightarrow maximum allowable outgassed mass flow rate: (2 vents diameter: 2.54 cm each)

$$1.4 \cdot 10^{-6} \frac{\mathrm{g}}{\mathrm{s}}$$

 \rightarrow max. allowable outgassed mass flow rate of radiator: (total area of radiator $\approx 110 \ m^2$)

$$1.2 \cdot 10^{-12} \frac{\mathrm{g}}{\mathrm{s} \cdot \mathrm{cm}^2}$$

Austrian Research Center

Thermal Vacuum Test I, 24 h Screening Test ESA-PSS01-702, ASTM E 595

LIMITS: TML \leq 1.0%, CVCM \leq 0.1 %

Sample	TML	WVR	RML	CVCM	
	(%)	(%)	(%)	(%)	
LRP 375BK					
not cleaned	0.22	0.02	0.20	-0.01	
CH_2CI_2	0.04	0.02	0.02	-0.01	
Separet					
405	0.20	0.15	0.05	0.00	

WVR: Water Vapour Regained

RML: Recoverd Mass Loss

Thermal Vacuum Test II, 144 h Test

ESA-PSS01-702, ASTM E 1595

LIMIT	:	$1.2 \cdot 10^{-12} \frac{\mathrm{g}}{\mathrm{s} \cdot \mathrm{cm}^2}$
LRP 375BK (CH_2CI_2)	:	$1 \cdot 10^{-12} \frac{\mathrm{g}}{\mathrm{s} \cdot \mathrm{cm}^2}$
Separet 405	:	$2 \cdot 10^{-12} \frac{\mathrm{g}}{\mathrm{s} \cdot \mathrm{cm}^2}$

Conclusion

- Both Materials are acceptable
- LRP 375 BK cleaned with CH_2CI_2 is better
 - \rightarrow Outgassing rates for 248K and 298K QCM \leq chamber background of $10^{-14} \frac{g}{cm^2s}$

Betreff: FW: Re: Out Dutum: Wed, 31 Jan 2 Von: "Martin, Tren An: "Klaus Luebe "Jens Krieger	tgassing data for AMS-02 Radiator Materials. 2001 12:43:28 -0700 4" <trent.martin@lmco.com> elsmeyer" <luebelsmeyer@physik.rwth-aachen.de>, r at RWTH" <isatec@rwth-aachen.de></isatec@rwth-aachen.de></luebelsmeyer@physik.rwth-aachen.de></trent.martin@lmco.com>
<pre>>Original Ma > From: Design Sent: Nednesday, > To: Martin, Tre > Cc: Gabiola, Ru > Subject: Re: > Immorrance: His</pre>	sasage Sgupta, R January 31, 2001 1:20 RM ent; 'Nlaus Lubelsmeyer' (E-mail); Clark, Craig ady : Outgassing data for AMS-02 Radiator Materials. ab
<pre>> Dr. Lubelsmeyer, > the samples at 0 > temperature by 0 > different cold pl > 0 + 1250, + 138K (-1) + 2300, 1138K (-1)</pre>	Enclosed are the Gutgassing rate files. We tested Comple temperature per approximate estimates of Faig Clark. The outgassing data was collected at <u>4</u> lates / Quartz Crystal Microbalances at 298K (+25C), +248K (5C) and <u>80K</u> . The typical ISS surfaces have temps. between you have problems understanding the data, please let pe
<pre>> know. > Conclusion: Both > preferable from a > <<rates_detairp. > File for IRP is f > Please note that > and +298K GCM, th > background of IRP. > two temps, are not</rates_detairp. </pre>	Materials are acceptable. The LRP 375 BK is better and im Outgassing standpoint. Naps> < <nates dataseparet.xls="">> for LRP 375BKand Separet is for 405 material. the Outgassing rates for LRP 375 was so low for the +248K int the rates were essentially below the chamber Ode-14 gm/cm2/sec. So, the analysis and curves for those is shown. BUT for all practical purposes, the rates can be</nates>
<pre>> taken as less tha > > Thanks > Rajib Dasgupte > Materials and Pro > Lockheed Martin, > Nouston, Taxas 77 > Phone.: (281)333- > Pager : (281)333-772 ></pre>	n 1x10e-14 gm/cm2/sec. mcesses #22 1058 -7043 -9755 27
Rates_DataLRP_xls	Name: Rates_DataLRP.xls Type: Microsoft Excel Worksheet (application/vnd.ms-excel) Encoding: BASE64
	Name: Rates_DataSEPARET.xls

Physics AC-I

Radiators, Testbeam

Physics AC-I

Radiators, Testbeam

Radiators, Testbeam

Radiators, Conclusion

Organic Chemistry Institute of RWTH-Aachen: Development of 10 soxhlett extraction setups for 360 m² of LRP 375 BK

