Threshold TRDs in Astroparticle Physics

Th. Kirn I. Phys. Institute, RWTH Aachen

"TRDs for the 3rd Millenium" III Workshop on advanced Transition Radiation Detectors for accelerator and space applications, Ostuni, 7-10 September 2005

Cosmic Ray Composition:

Protons	88 %	
Helium	10 %	
e-	1 %	
e^+	0.03 %	

- e⁺ / p: 1 / 3000
- Primary Cosmic Rays: (p, He, C, O, Fe)

\rightarrow Important for Secondary Production

• Secondary/Primary Nuclei: (B/C, ¹⁰Be/⁹Be)

→ Constraints on CR Propagation & Diffusion Models

- γ-Ray Astrophysics
- Secondary Anti-Particles
 - CR nuclei + ISM $\rightarrow \pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$ $\chi \chi \rightarrow \overline{bb}, W^+W^-, Z^0Z^0 \rightarrow e^{\pm}$
 - \rightarrow Indirect Dark Matter Detection

Th. Kirn

Threshold TRDs in Astroparticle Physics

Ballon Experiments: TS93 HEAT TRACER CREAM

Space Experiments:

CRN AMS PAMELA ACCESS

Underground Experiments: MACRO

Threshold TRDs

Th. Kirn

Threshold TRDs in Astroparticle Physics

EM showers for e^{\pm} , 5 xy-layers Si+tungsten

e⁺/p-discrimination, active area 76.80 cm²

Weight: 237 kg, Power: 100 W \rightarrow 2560 ch.

- **10** Layers Carbon Fiber Radiator + MWPC
- $\rightarrow X_0 = 0.13$
- **10** Layers in aluminium box
- \rightarrow **10 G** shock protection

Radiator:

1 Layer \rightarrow aluminium frame \rightarrow 4 polyethylene bags \rightarrow Carbon fiber segments 1. Layer \rightarrow 1 additional radiator Density: 0.06 g/cm³

MWPC (Xe/CH₄ 80/20):

Anode – Cathode 8mm 1 Anode plane \rightarrow 256 gold plated tungsten wires, Ø 25µm, tension: 70g, 3mm spacing HV: 2950 V \rightarrow Gasgain 10⁴, Fe⁵⁵ – Monitoring Overpressure in box 50 µbar, 870-1000 mbar

IABLE I			
Summary of	Electron-Positron	RESULTS	

Energy Bin at Spectrometer (GeV) (1)	Observed Number of Events ^a		Median Energy at	Corrected Number at TOA		$[e^+/(e^+ + e^-)]$
	$e^{-}(2)$	$e^{+}(3)$	TOA (4)	$e^{-}(5)$	e ⁺ (6)	(7)
4.0–5.0 5.0–7.0 7.0–11 11–50	109 165 97 56	14 (0.9) 17 (1.5) 11 (1.3) 10 (1.3)	5.71 7.49 10.8 22.0	$\begin{array}{c} 129.0 \pm 12.6 \\ 163.6 \pm 13.0 \\ 78.4 \pm 8.08 \\ 40.5 \pm 5.70 \end{array}$	$\begin{array}{c} 11.50 \pm 4.0 \\ 11.56 \pm 3.54 \\ 6.57 \pm 2.47 \\ 5.01 \pm 2.25 \end{array}$	$\begin{array}{c} 0.082 \pm 0.027 \\ 0.066 \pm 0.019 \\ 0.077 \pm 0.028 \\ 0.110 \pm 0.046 \end{array}$

^a The numbers shown in the parentheses are the residual proton contamination.

High Energy Antimatter Telescope

Barwick et.al. Phys. Rev. Lett. V75 (1995) 390-393, Barwick et al. NIM A 400 (1997) 34-52, J.J. Beatty et al. Astrophys. J. (2004)

- Balloon missions **1994 2002**
- Measurements of:
 - e⁻, e⁺, p-rejection 10⁵, CR-abundances
- Time of Flight System $\rightarrow Z$ of particle $\frac{dE}{dx} \approx \frac{Z^2}{\beta^2 e^2}$
- Transition Radiation Detector e⁺/p-discrimination
 6 pairs of plastic fiber radiators + MWPC (Xe 70% / CH4 30%)
- Drift Tube Hodoscope (1T-field) R=pc/Ze, p_{max}~ 54GeV/c
- ECAL

EM showers for e[±], **TOF-Stop-Signal** 10 layers lead + plastic scintillators

HEAT- TRD

Radiator:

Polyethylene fiber blankets Effective fiber diameter: 21 µm Mean fiber spacing: 380 µm Radiator thickness: 12.7 cm

MWPC:

Xe / CH4 (70 % / 30%), HV=3700V @ 1bar

Cathode windows: 50 μ m aluminized mylar (tension 200 g/cm) Windows are etched to form strips on mylar surface (7.8 cm wide, \perp wire) Anode wire: 13 μ m gold plated tungsten wires, 5 mm spacing Anode wire plane offset from center \rightarrow time profil widening of arriving charge @ wire X-ray signal arrive later in time than start of ionization signal 8-10 wires \rightarrow 1 electronic channel \rightarrow spatial res. O(cm) \rightarrow tracking \rightarrow rejection δ -e⁻

TRD electronic:

Two kind of signals recorded:

1. <u>PHA method:</u> total charge induced on cathode planes eventwise;

planes closer to anode wires are subdivided into a total of 56 strips, each strip signal \rightarrow charge sensitive/shaping amplifier \rightarrow peak detector \rightarrow 12bit ADC

2. <u>Time slice method:</u> time structure of current pulses on anode wires for all MWPCs anode wires combined into 96 wire groups (8-10 wires → 1 group); Signal from each group → Amplifier → 3 || discriminators (different thresholds) → output polled every 25 ns System ~ flash ADC with coarse (2 bit) amplitude resolution

e⁺/(e⁺ + e⁻) – Fraction: e⁺ from Annihilating Galactic Halo WIMPs?

Phys. Rev. D 65 (2002);

Threshold TRDs in Astroparticle

Measurements of (3 years Mission): e^{-} (50 MeV – 3 TeV), e^{+} (50 MeV – 270 GeV),

p (80 MeV – 700 GeV), **p** (80 MeV – 190 GeV), **Nuclei** < 200 GeV/n (Z<6)

PAMELA- $e^+/(e^+ + e^-)$ - Fraction

SPS, July 2000 **TRD Performance** Beamtests at CERN PS and SPS facilities Particles: π , μ , e Momentum Range: 2 - 5 GeV/c (PS), 40 - 80 GeV/c (SPS)

Th. Kirn

Threshold TRDs in Astroparticle Physics

Rejection factor of 20 for non-radiating particles (a) ~ 90 % e⁻ efficiency

Alpha Magnetic Spectrometer AMS

AMS-02 – A TeV Particle Spectrometer

TRD Particle ID & 3D tracking, 20 layers fleece + Xe/CO_2 , 5248 channels 6mm straws **p⁺ rej.** >10² 1-300 GeV 0.5m²sr

TOF 1,2 Trigger, $\sigma_{t:}$ = 120ps: β dE/dX: Z; Anticoincidence (Veto) counter, Fine Mesh PMTs + plastic scintillators

Superconducting Magnet, B=0.9 T, BL² = 0.8 Tm²

Silicon strip tracker ($2 \cdot 10^5$ Ch) with internal laser alignment, 6 m² in 3 double+2 single xy layers, 1 σ charge separation up to 1TV, dE/dX: Z

TOF 3,4 Trigger , 1.3 m distance to TOF 1,2 $p^{+}\!/e^{+} > 3\sigma$ below 2 GeV

RICH Aerogel / NaF Radiator for A \leq 27 and Z \leq 28 separation > 3σ from 1-12 GeV

ECAL 3D sampling lead/scint.- fibre, with p-E matching + shower shape: h rej. >10⁴ 1-300 GeV 0.05m²sr

Threshold TRDs in Astroparticle Physics

AMS-02-Physics Expectations: p, He Energy Spectra

Spectral index: Origin and acceleration, differences between both species Used to determine the expected fluxes of \bar{p} and e^+ , atmospheric neutrinos, etc...

Th. Kirn

AMS-02-Physics Expectations: Hadrons Z > 2

In addition to the information provided by primary CR such as C, N and O, secondary CR (produced by spallation) are used to estimate the amount of matter traversed by the CR (confinement volume and time)

AMS-02-Physics Expectations. Direct Search for Anti-Helium

Threshold TRDs in Astroparticle

Th. Kirn

Threshold TRDs in Astroparticle Physics

30

AMS-02: p/e⁺-Separation

Th. Kirn

Threshold TRDs in Astroparticle Physics

AMS-02 - TRD

p⁺ rejection >10² 1-300 GeV 0.5m²sr

Choosen configuration for 60 cm height: 20 Layers each existing of:

- 22 mm fibre fleece
- Ø 6 mm straw tubes (Xe/CO₂ 80%/20%)

${\sf Radiator} + {\sf Straws} + {\sf Xe/CO}_2$	168 kg
Octagon + Support + Shielding	207 kg
Gas System	50 kg
Electronics	53 kg
TRD Total	478 kg

4000 individual pieces cut to length Ds in A nysics

Radiator LRP 375 BK:

Polyethylene/Polypropylene fibers Effective fiber diameter: 10 µm Radiator thickness: 22 mm Density: 0.06 g/cm³ Cleaning with Dichlormethane CH_2Cl_2 $\rightarrow dM/dt \approx 10^{-12}$ g/s/cm²

AMS-02 - TRD

Straw tube proportional counter modules:

AMS-02 – TRD: Flight Module Gastightness

Physics

AMS-02 – TRD: Computer Tomography X-Ray

Luisenhospital Aachen (GE 16-Channel CT)

Wire- and Tube-xy-Fit ($\sigma{\approx}10\mu{
m m}$)

Th. Kirn

Threshold TRDs in Astroparticle Physics

AMS-02 – TRD: Computer Tomography X-Ray

Controlled Shimming of +200 μ m y-direction in middle of module

Th. Kirn

Threshold TRDs in Astroparticle Physics

AMS-02 – TRD: Fe⁵⁵ - Gasgain Flight Modules

	Ch160 on Nome	ex Shim 0.6mm	Gain 6098 RMS 150
	0.1 0.3 0.5 3.2 1.5 4.2 0.1 -0.1 0.2 2.0 -0.7 0.2 -2.6 -1.3 -2.1 -2.9 -3.3 -1.4 -3.7 -1.4 -4.0 -1.9 -2.6 -1.1 -2.4 -0.5 -1.0 0.6 -1.0 1.0 -0.1 -1.2 0.3 -2.1 -0.6 -1.4 -2.3 -1.7 -0.5 -2.1 -0.3 -0.6 -0.7 -1.4 0.8 -1.6 -0.1 -2.1 -1.9 1.3 -0.7	0.7 0.9 1.1 1.8 5.7 7.1 1.0 4.1 3.8 0.5 0.1 3.2 0.4 0.6 2.5 -1.1 0.8 3.2 -1.2 -0.9 1.4 -2.1 0.7 2.7 0.8 1.1 2.3 0.4 5.6 0.5 2.8 3.6 -1.0 0.4 1.6 -1.5 1.3 2.0 0.7 2.2 1.9 -1.1 1.9 4.2 1.8 2.6 2.2 2.4 1.6 3.1	1.3 1.5 1.7 1.9m Straw 5.2 4.2 0.2 -0.9 1 2.9 1.8 -1.2 -2.4 2 4.2 -0.6 -2.9 -3.8 3 2.8 -0.6 -2.8 -4.6 4 1.7 0.7 -3.0 -3.7 5 2.8 -0.6 -1.9 -4.7 6 1.9 0.6 -2.9 -3.0 7 2.1 -0.6 -2.9 -3.0 7 2.1 -0.6 -2.9 -3.0 7 0.9 0.6 -2.9 -3.0 7 0.1 -0.6 -2.0 -3.6 8 1.6 2.8 -1.1 9 9 0.9 0.8 -1.4 -2.7 10 2.1 -1.7 -3.6 -4.4 11 -0.1 -0.3 -4.8 -5.0 12 3.4 0.4 -3.1 -5.1 13 1.7 0.5 -3.0 -3.1
	[RMS gasgain	
00 9 Fe ⁵⁵ Spectrum 00 59 8 1350V Ar/CO ₂ 20° 1013mbar 11/h 0 58	Gasgain Variation	60	RMS _{mean} : 0.59 % 328 modules
S 7 Ped. Fe ⁵⁵ 5.9keV S S 5 6 265.8 265.8 55 55 55 55		40	
4 54 3 53 2 52	Mean = 5406	20-	
	RMS = 1.21%		
200 250 300 50 ADCbin	2 4 6 8 10 12 14 16 Wire Physics	U	RMS [%]

AMS-02 – TRD: Octagon Structure: 3D-Measurement

+0.35 mm

Upper and lower 4 layers \parallel B Middle 12 layers \perp B

Th. Kirn

Thresh

AMS-02 – TRD: Flight Module Integration Status

AMS-02 – TRD: Flight Module Integration Status

Module-Octagon-Integration 04/05

/ 03/ 2000

Threshold TRDs in Astroparticle Physics

AMS-02 – TRD: Space Qualification: Structural Verification

Vibration-Test-Cycle:

- Sine Sweep 0.5g (10-2000Hz)
- \bullet Random Spectrum $a_{\rm RMS}=6.8g$
- Sine Sweep 0.5g (10-2000Hz)

FEC coupled load modal analysis

Parameters from static measurements Verify with component vibration tests

Th. Kirn

AMS-02 – TRD: Space Qualification: Thermo-Vacuumtest

Thermovacuum Start 14.07.03 12:29:56

- No significant changes in:
- Gasgain
- Gastightness
- \rightarrow Straw Modules space qualified

TRDs in Astroparticle Physics **AMS-02 – TRD: Front End Electronic**

VA-Chip Multiplexed Pulsheight Readout

Th. Kirn

Threshold TRDs in Astroparticle Physics

AMS-02 – TRD: FE & DAQ

UFE Channel Number

40

Threshold TRDs in Astroparticle

50

60

AMS-02 – TRD: FE & DAQ: Space Qualification

AMS-02 – TRD: FE & DAQ: Local Discharge (Corona) Test

Physics

AMS-02 – TRD: FE & DAQ EMI-Test

Wave : Horizontal / Vertical Polar. Frequency range : 10 kHz ~ 1 GHz Electric Field : 5 ~ 100 [V/ m]

Th. Kirn

Threshold TRDs in Astroparticle Physics

Beamtest @ CERN 2000 PS (T9) & SPS (X7, H6): Recorded events: $3 \cdot 10^6$ Particles: e^- , μ^- , π^+ 10 - 100 GeV Protons 10 - 250 GeV

TRDs in Astroparticle Physics

AMS-02 – TRD: Performance, 20 Layer Prototype

AMS-02 – TRD: TRD Spectra with Geant 3⁺ MC

dE/dX in thin gas-layers V. Ermilova, NIM A 145 (1977) 555

TR gener. and absorp. Implement. V. Saveliev (HERA-B)

M. Cherry, Phys.Rev.Lett. D **10** (1974) 3594 G.M. Garibian, NIM A **125** (1975) 133

AMS-02 – TRD: Performance, 20 Layer Prototype

AMS-02 – TRD: Longterm Test

AMS-02: Launch Schedule

AMS Assembly @ CERN (2006)
 AMS Space Test @ ESTEC (2007)
 Launch @ NASA/KSC (2008)
 Installation On-board ISS (2008)

Precision TRDs

Th. Kirn

Threshold TRDs in Astroparticle Physics

Cosmic Ray Nucleus Experiment

Space Shuttle Challenger Flight July 29th 1985, Duration 8 days Orbit inclination 49.5° Altitude: ~ 310 km

CRN TRD Radiator: 6 Modules

Radiator composition and fiber batting materials

Radiator composition			
•	Composition	Effective thickness [g/cm ²]	
Radiator 1 ^{a)}	15.2 cm fiber batting #1 6.7 cm fiber batting #2	~ 0.6 ~ 0.3	
Radiators 2–6	5.0 cm fiber batting #1 6.7 cm fiber batting #2	~ 0.2 ~ 0.3	
Fiber batting materials	Batting #1	Batting #2	
Supplier Material Type Composition Fiber Diameter [µm] Fiber density [g/cm ³] Batting Density [mg/cm ³]	Hercules Inc. Herculon 101 Olefin fibers 17 0.9 40	3M Company Thinsulate M400 Polyolefin fibers 2-5 (average 4.5) 0.9 45	

a) Radiator 1 is the most upstream radiator.

$$\rightarrow$$
 X-Rays 2-15 keV

J. L'Heureux et al. NIM A295 (1990) 246-260

Transition Radiation Array for Cosmic Energy Radiation

• Detector Dimensions: $\sim 2.0 \text{m x} 2.0 \text{m x} 1.5 \text{m}$ • Geometric Factor $\sim 5m^2 sr$ Scintillation Counter \rightarrow Z measurement of • 1600 Proportional tubes (\emptyset 2cm, L=200 cm) filled with Xe/CH₄: 8 Layers straws \rightarrow dE/dx of incoming CR particle 4 Layer Radiator + double layer straws \rightarrow Energy measurement of elements O - Fe (0.5 GeV/n to 10 TeV/n)• Cerenkov Counter rejects low energy particles • 1-day flight Antarctica 1999 • 10-day LDB flight Antarctica 03

TRACER

10³

 10^4 Lorentz Factor γ^{10^5}

 10^{2}

0.1

68

Cosmic Ray Energetics And Mass

- Measurement of individual energy spectra and element composition of CR $(1 = Z \ge 26)$ from 1 TeV - 1000 TeV
- Search of cutoff in p-spectrum $\sim 100 \text{ TeV}$
- Test of propagation models: Measurement of B/C up to 500 GeV/n

Balloon flight: 41d 21h 31 min December 15th 2004 – January 27th 2005

in Astroparticle

sics

- Three Complementary Z-Measurements
 - Timing Based Charge Detector
 - Pixelated Silicon Detector
 - Scintillating Fiber Hodoscope
- Two Complementary E-Measurements
 - Transition Radiation Detector Xe/CH_4 (95%/5%) mix (velocity for $Z \ge 3$)
 - Tungsten SCN Calorimeter (energy for $Z \ge 1$)
- Acceptance
 - 0.3 m² sr for Z=1 & 2
 - 1.3 m² sr for $Z \ge 3$

Figure 3: Measurements of the energy deposited in the TRD tubes versus the normalized Cherenkov light signal during the flight (~1 day).

- 2 Sections (35 cm) of 4 Layers \rightarrow 8 Layers
- Active area 120.120 cm²
- Polystyrene foam radiator (mechanical support for tubes)
- 512 Proportional tubes, 16 Layers Aluminized Mylar (100 μm), Length: 1.2m, Ø 2cm Xe/CH4 (95%/5%) @ 1bar
- Measurement of γ and trajectory
- Sensitivity range $10^3 < \gamma < 10^5$

Conclusions

- TRDs have been used in underground, balloon and space experiments
 - \rightarrow Measurements of cosmic ray e⁻, e⁺ and highly relativistic nuclei
- Threshold TRDs excellent devices for Dark Matter Susy searches
 - Advantage of low mass to area ratio
 - Space qualified TRD designs like AMS-02 or PAMELA
 - Long flight duration in space > 3 years possible
- Precision TRDs excellent devices for measuring high energy CR-nuclei up to the energy of the knee \rightarrow no saturation before $\gamma \sim 10^5$