TRDs for the 3 rd millennium

Performance of the AMS02 TRD prototype

for the AMS-TRD Group MIT, Roma, RWTH

Th. Kirn I. Phys. Institut RWTH Aachen

Bari, September 22nd 2001

Performance of the AMS02 TRD Prototype

- AMS02 on ISS
- TRD Prototype Beamtest
 - Beamtest Setup
 - Calibration
 - Proton Rejection
 - Comparison Data \leftrightarrow MC

ISS - an experimental platform

← AMS02 on ISS

- mean altitude 400 km
- in orbit for 3 years
- large acceptance 0.5 $m^2 sr$

⇒ Cosmic Particle Spectroscopy

What would we like to measure?

Why would we like to measure it?

 \implies Cosmic-ray spectroscopy with highest-precision in

Particle identification $p^+/e^+ < 10^{-6}$ to 300 GeV

Physics AC-I

Transition Radiation Detector

Chosen configuration for 60 cm active height:

20 Layers each existing of

- 22 mm fleece
- \varnothing 6 mm straw tubes Xe/CO₂ (80/20)

Octagon and Bulkheads support 328 Modules with lengths from 86 to 201 cm

Upper/lower 4 layers measure in bending plane

Middle 12 layers measure in perpendicular plane

TRD Principle

6 longitudinal stiffeners

Strips across every 10 cm

Prototype TRD Modules (L=40 cm)

Gas manifold:

Prototype TRD Modules

Measurements:

- Wire tension
- Gas tightness
- Gasgain

8000

 $(99.0 \pm 1.7) \, \text{g}$

 $(10^{-4} \frac{\text{mbar}}{\text{s}})$

Th. Kirn, 8

10

8

12 14

16

straw

⇒ 20 Layer Prototype (40 Modules)

Gassystem (P,T controlled)

20 Layer Prototype

Physics AC-I

Beamlines CERN X7, H6

Ebeam	15 2000		X1 2000				110 2000
GeV	#e-	#p+	#e-	#p+	$\#\mu$ -	$\#\pi$ -	#p+
3.5	50k	71k					
5.0	21k	19k	120k				
10.0		28k	160k			20k	
15.0				45k			
20.0			150k	30k		20k	
40.0			160k	60k		20k	
60.0			180k	20k	190k	20k	
80.0			120k	20k	170k	20k	
100.0			200k	150k	110k	50k	
120.0				30k			215k
140.0				30k			
160.0				40k			290k
180.0				40k			
200.0				80k			155k
250.0				65k			

Calibration

Tube Intercalibration (with myons):

- Fit MOPs for each Tube i and Run r
- Determine runwise relative tube MOPs
- Add up runs scaled with overlapping tubes

 \rightarrow Ical-Table

Gasgain Calibration

- Intercalibrated tube-avrg MOP for each run
- Correlate to gas-density
- \rightarrow Gasgain correction $M' = M * [1 + (\rho/\overline{\rho} 1) * 5.4]$

Energy Calibration

- Intercalibrated gasgain corrected ${\rm Fe}^{55}$ peaks
- \rightarrow $E_{\it ADC}$ \doteq 5.9 keV / 646 ADC-Ch

Entries 14.18 / 10 'χ²/nd: **P1** 64.98 ± 3.968 7.448 P2 $195.5 \pm$ P3 90.43 : 5.771 80 60 40 20 200 400 800 600 **ADC Channel**

Myon Intercalibration

Beamtest Intercalibration horizontal modules: ≈ 20000 myon/tube vertical modules: ≈ 10000 myon/tube

Most of straws Ical-error < 2%

On ISS intercalibration will rely on particle data

Myon Gasgain Correlation

Color codes Beam-Energy

rel. GasGain vs Mean Density

T.S. 15/12/2000 20:09

1% density variation (3K) leads to 5.4 % gain variation

RWTH Physics AC-I

Event Selection

Require clean single track events (single track efficiency 50% - 80%)

20 GeV Tube Spectra

⇒ CC: Hits in a tube with E > 6.5 keV → TR-Hit ⇒ LH: energy-loss distributions $P_{e,p}^i(E_i)$ per tube for e^- and p^+ .

Cluster Counting

Likelihood Method

- Determine normalised energy-loss distributions $P_{e,p}^i(E_i)$ per tube for e^- and p^+ .
- Use $P_{e,p}^{i}(E_{i})$ as propability density functions
- For each Event run along the track and calculate the propability

$$W_{e,p} = \prod_{i=1}^{N} P_{e,p}^{i}(E_i)$$

• Determine the Likelihood Ratio:

$$L_e = \frac{W_e}{W_e + W_p}$$

Likelihood

Likelihood

 \Rightarrow Proton-Rejection 2.2 % at 90 % Electron-Eff.

Physics AC-I

X7: Rejection vs. Beam-Energy

GEANT 3.21 + TR-generation/absorption: (Cherry Phys. Rev. D 10 (1974) 3594, implemented by V. Saveliev)

10 ⁴ p+ DATA O e- DATA Δ p+ MC e- MC 10 ³ 10 ² 10 5 10 15 20 25 30 35 0 keV Etube in keV

20 GeV X7 DATA vs GEANT MC

Th. Kirn, 22

RNTH Physics AC-I

Th. Kirn, 23

• π^+ -contamination in p^+ -beam

Binomial Stat. vs. Cluster Counting

 \Rightarrow 6 $\%_0$ Pion Contamination can explain difference

RWTH Physics AC-I

Conclusion + Outlook

- TRD prototype performed better than expected proton rejection $< 10^{-2}$ up to 250 GeV
- GEANT TR/dEdX up to 300 GeV in progress
- \bullet Cleaning of LRP 375 BK with CH_2Cl_2 does not effect TR-yield
- End of TRD-construction \rightarrow Sep. 2002 \hookrightarrow Cosmictest with full TRD
- Full TRD beamtest forseen for early 2003
- AMS02 Assembly end of 2003
- Set for liftoff in Nov. 2004

