TRDs for the 3rd millennium

The AMS02 TRD A detector designed for space

for the AMS-TRD Group MIT, Roma, RWTH

Th. Kirn I. Phys. Institut RWTH Aachen

Bari, September 20th 2001

The AMS02 TRD A detector designed for space

- Cosmic Particle Spectroscopy
- AMS02 on ISS
- AMS01 Results
- TRD for particle identification
- TRD Design for space
- Conclusion

Iss - an experimental platform

What would we like to measure?

Why would we like to measure it?

Experiments in space

New environment for HEP experiments

- Operation in vacuum
- Acceleration during start and landing up to 9g
- Temperature variations -180 +50 °C
- Deposition limits on ISS $< 10^{-14}~{\rm g/s/cm^2}$
- Weight limited to 13500 lb
- Datarate 1 Mbyte/s via 1 datalink
- Power consumption limited to 2kW
- Powersupply at 120 V via 1 powercable

AMS01 STS-91 Precursor Flight

- 2-11 June 1998 aboard Shuttle Discovery
- Mean altitude 370 Km
- 90 min orbit inclined at 51.7°
- Trigger-rate 100-700 Hz
- Recorded 10^8 events in 100 h

AMS-01 Laser # and Cosmic Ray (* Alignment Control

RWTH Physics AC-I

AMS01 Results

Assume \overline{He} and He have the same spectrum up to 140 GV then $\overline{He}/He < 1.1\cdot 10^{-6}$

10

10

10

Search for Antihelium in Cosmic Rays Phys. Lett. B461 (1999) 387-396

Protons Near in Earth Orbit

Phys. Lett. B472 (2000) 215-226

Leptons in Near Earth Orbit

Phys. Lett. B484 (2000) 10-22

Cosmic Protons

Phys. Lett. B490 (2000) 27-35

Helium Near in Earth Orbit

Phys. Lett. B494 (2000) 193-202

50 AMS01 related papers submitted to ICRC 2001

Th. Kirn, 10

10 Kinetic Energy (GeV)

AMS02 – A Particle Spectrometer for ISS

How to suppress proton background to 10^{-6} and perform high statistic tracking up to 1 TV?

Large acceptance 0.5 m^2 sr in orbit for 3 years

TRD Particle ID & 3D tracking 20 layers fleece + Xe/CO2 5248 channels 6mm straw-tubes

 $p^+/e^+ < 10^{-2}$ (10 - 300 GeV)

TOF 1,2 Trigger $\sigma_t \approx 125$ ps

Anticoincidence (Veto) counter

Silicon strip tracker with internal laser alignment 6 m² in 3 double + 2 single xy layers 1σ charge separation up to 1TV

TOF 3,4 1.3m distance to TOF 1,2 $p^+/e^+ > 3\sigma$ below 2 GeV

PFRICH AGL(+NaF) Radiator for A \leq 27 and Z \leq 28 separation > 3σ from 1-12 GeV

ECAL 3D sampling lead/scint.-fibre with p-E matching and shower-shape

 $p^+/e^+ < 10^{-4}$ (10 - 300 GeV)

Physics AC-I

AMS02 Expectations

AMS01 statistics $\times 10^3$ momentum reach $\times 6$

TRD Octagon Support

Component	kg
Radiator + Straws	118
${\sf Xe}/{\sf CO}_2$	46
Octagon + Support + Shielding	207
Gas System	50
Electronics	53
TRD Total	474

TRD Octagon Construction

20 layers with 22mm radiator 6mm straw tube modules

Upper/lower 4 layers measure in bending plane Middle 12 layers measure in perpendicular plane

328 Modules, supported with 100 $\mu{\rm m}$ mech. accuracy

Chamber support in Octagon

Octagon + bulkheads support chambers from 86 to 201cm

Structural Verification (modal analysis)

NASA requirement: $f_0 > 50$ Hz

Parameters from static elastic modulus measurements Verification with componet vibration tests

Structural Verification (displacement)

Main accelerations during shuttle start: 7.7g in x and at landing: 8.9g in z

Max. displacement 0.73mm well within elastic limits

TRD-Principle

Realisation: HERAb/ATLAS straw-tubes and fleece

RWTH Physics AC-I

TRD Parameters

6 longitudinal stiffeners Strips across every 10 cm Module lengths between 86 cm and 201 cm $f_0 = 101$ Hz

RWTH Physics AC-I

Diffusion Measurements

Gas leakage through straw wall

RWTH Physics AC-I

TRD Gas System (MIT)

Allowed leakage: $1 \cdot 10^{-4}$ mbar/s at 1 bar Equiv. to 1760 | Xe and 440 | CO₂ in 1000 days

Storage:	44.3 kg Xe	3.7 kg CO_2 at 50 bar
Equiv. to	8100 Xe	2000 I CO $_2$ at 1 bar

Extra safety factor of 5 for gas-refreshing

Circulating system serving 41 loops at 1 l/h each with 8 modules in series

Straw Module Produktion

Physics AC-I

Chamber Body Glueing

Adjustable cutting/positioning jig built at AC I

Carbon-fiber rod assures straightness straw to straw: 50 μ m along straw: 10 μ m

Glueing with automatic dispenser

Wire Stringing

Stringing & crimping NIM A336 (1993) 128 Wiretension Measurement

Serial Test

Operation at 1.25 bar Burst test to 2.5 bar

- Gastightness at 2 bar $< 2 \cdot 10^{-4} \text{ mbar/s}$
- $\begin{array}{l} {\sf Leakage} < 1 \,\, {\sf nA} \,\, {\sf through} \\ {\sf coupling} \,\, {\sf capacitor} \,\, ({\sf I}_C) \\ {\sf tube} \,\, ({\sf I}_T) \\ {\sf UTE} \,\, {\sf corona} \,\, ({\sf I}_U) \end{array}$

Gas system panel by MIT

Xe/CO₂ Gasgain Pre-Calibration

Selftriggered Fe⁵⁵ spectra on precision granite block p and T corrected $\Delta G/G \approx 5 \cdot \Delta \rho / \rho$

Gain at 1650V 1bar 20°C homogenity < 2%G = 14000 \pm 5%

Gas system panel by MIT

Xe/CO₂ Gasgain Pre-Calibration

Vibration table at AC I for component testing and space qualification

Physics AC-I

Frontend Readout (RWTH)

20 W for 5248 channels: Multiplexed pulseheights only

VA Inputrange: 1500 fC \approx 50 MIPs (gasgain 3000) Noise: \approx 7000 e^- \approx MIP/30

TRD DAQ

DAQ with 2x / 3x redundancy UDR for data-reduction (1Mbyte/s limit)

R & D: C.A.E.N., Geneva, MIT, RWTH Prod.: CSIST (Taiwan)

TRD Readout

TRD Readout

Frontend Space Qualification

Vibration/thermovacuum qualification for electronics

Leakage currents 0.3nA unaffected

Radiator Tests

Deposition rate on nearby attached payloads at ISS

LIMIT:
$$10^{-14} \frac{\text{g}}{\text{s} \cdot \text{cm}^2}$$

Radiator outgassing limit $< 10^{-12} \frac{\text{g}}{\text{s} \cdot \text{cm}^2}$

1.) LRP 375 BK (ATLAS) 10 μ m Polypropylene, $\varrho = 0.06 \frac{g}{cm^3}$, 26.00 $\frac{DM}{m^2}$ \implies not space qualified 2.) LRP 375 BK cleaned with CH_2CI_2 ((Soxhlett extraction)) 10 μ m Polypropylene, $\varrho = 0.06 \frac{g}{cm^3}$, 126.00 $\frac{DM}{m^2}$ \implies space qualified 3) Separet 405 14 μ m Polyacryl, $\varrho = 0.08 \frac{\text{g}}{\text{cm}^3}$, $5.00 \frac{\text{DM}}{\text{m}^2}$ \implies space qualified Tested materials manufactured by Freudenberg Vliessstoffe KG

RWTH Physics AC-I

Radiator Tests

4000 pieces cut to individual shape

10 soxhlett extraction pipes (70cm) installed at RWTH Aachen Institute of Organic Chemistry

1000 modules of 22mm are sewn from 4 layers of 5.5mm

TRD thermal model

For gasgain stability: $\Delta T < 2^\circ C$

Conclusion and Outlook

- Space qualification requirements fulfilled
 - Eigenfrequency
 - Material stress
 - Radiator Outgassing
 - Gastightness
 - Weight and power
- End of TRD-construction \rightarrow Sep. 2002 \hookrightarrow Cosmictest with full TRD
- Full TRD beamtest forseen for 2003
- AMS02 Assembly end of 2003
- Set for liftoff in Nov. 2004

