TRDs for the 3rd millennium **Status of the AMS TRD**

for the AMS-TRD Group MIT Boston, INFN Rome, IEKP Karlsruhe, CHEP KNU Daegu, RWTH Aachen

> Th. Kirn I. Phys. Institute RWTH Aachen

> > Bari, September 5th 2003

Status of the AMS TRD Straw Modules

C.H. Chung, S. Fopp, K. Lübelsmeyer, W. Karpinski, Th. Kirn, S. Schael G. Schwering, Th. Siedenburg, R. Siedling, A. Schultz von Dratzig, M. Wlochal

1.) Single Straw Test 2.) Module Production

3.) Space Qualification

AMS02-Detector

Height: 3.50 m Width: 2.30 m Weight: 7 t

AMS02 on ISS

- Mean altitude 400 km
- in orbit for 3 years
- acceptance 0.5 m²sr

 \Rightarrow Cosmic Particle Spectroscopy

Space, a new environment for HEP experiments

 Acceleration during start and landing Design Goal up to 9g

- Operation in vacuum
- Temperature variations: -150 +30 °C
- Deposition limits on ISS: $< 10^{-14} \text{ g/s/cm}^2$
- Weight limited to 14000 lbs
- Power consumption limited to 2kW
- Single Powersupply at 120 V
- Datarate 1 Mbyte/s via 1 datalink

⇒ Cosmic Particle Spectroscopy

Cosmic Particle Spectroscopy

Th. Kirn

AMS02 – A TeV Particle Spectrometer for the ISS

TRD Particle ID & 3D tracking 20 layers fleece + Xe/CO_2 5248 channels 6mm straw-tubes

 $p^+Rej > 100 \text{ from } 10-300 \text{ GeV}$

TOF 1,2 Trigger $\sigma_t \approx 125$ ps Anticoincidence (Veto) counter

Silicon strip tracker ($2 \cdot 10^5$ Ch) with internal laser alignment 6 m² in 3 double + 2 single xy layers 1 σ charge separation up to 1TV

Superconducting Magnet (ETH) B = 0.9T V = $0.6m^3$

TOF 3,4 1.3m distance to TOF 1,2 $p^+/e^+ > 3\sigma$ below 2 GeV

PFRICH AGL(+NaF) Radiator for A \leq 27 and Z \leq 28 separation > 3σ from 1-12 GeV

ECAL 3D sampling lead/scint.-fibre $p^+Rej > 10^4$ from 10-300 GeV

with p-E matching and shower-shape

Bari, September 5th 2003

p^+ -rejection $> 10^2$ (10 - 300 GeV)

Chosen Configuration for 60 cm height: 20 Layers each existing of

- 22 mm fleece
- \varnothing 6 mm straw tubes (Xe/CO₂ (80/20))

AMS-02 TRD Straw Modules: 16 straws at 6mm \varnothing with 30 μ m W-Au wire

AMS-02 TRD:20 Layer Prototype Testbeam

AMS-02 TRD

Octagon and Bulkheads support 328 Modules (5248 Straws) (L=86 to 201 cm) with 100 μ m mech. accuracy

Upper/lower 4 layers measure in bending plane

Middle 12 layers measure in perpendicular plane

AMS-02 TRD

TRD Gassystem (MIT)

AIM: CO₂ Safety Faktor: 4

Th. Kirn

Physics AC-I 12

CO_2 Safetyfaktor using 50h CO_2 and 12h He Measurements

 $\bullet~$ Bad straws vs bad modules $\rightarrow~$ perfect correlation

 \implies Need to test each of 5248 straws \rightarrow need fast measurements

• 12h reference measurement over night

 $\rightarrow \Delta \text{p-increase}$

Straw-Production Lot-Statistics

 $m Q_{LEAK}$ in 10⁻⁵ 1 mbar / s m_{CH}

Module Production:

169 Straw Modules: Safety Factor for TRD: ~ 6.7 $6.7 \times 3y = 20$ years operation on ISS

Measurement of Gas Gain with Fe^{55} source

Mean: 5720.69 RMS: 63.90 c:\ggdata\progs\027_3S.pas

Straw										
1	2.1	1.6	-2.1	1.0	1.4	1.9	-0.3	0.5	1.6	0.5
2	-0.8	1.2	0.0	-0.7	1.2	1.0	1.7	-0.Z	1.9	1.3
3	-0.4	-0.5	0.8	-1.3	-0.3	1.6	2.4	0.7	2.9	2.4
4	-0.4	-1.0	-0.7	-0.5	-1.6	-1.2	0.4	0.5	0.4	0.7
5	-0.3	0.2	-1.4	0.2	0.3	0.1	0.5	0.8	1.5	0.1
6	-0.4	0.7	-1.7	-0.1	0.4	-1.3	-0.2	1.4	-0.8	-1.2
7	-1.1	0.9	-1.9	-1.1	0.3	-0.3	-1.1	1.4	0.6	-0.0
8	-0.4	-0.1	-1.2	-0.8	-0.0	-2.0	0.4	1.4	-1.4	-1.2
9	-0.1	-0.3	-0.2	-0.7	-0.8	-1.4	0.2	1.4	-1.2	-0.Z
10	-0.1	0.6	-2.5	-0.3	1.0	0.0	-0.5	0.6	1.2	-1.3
11	-1.7	-0.6	-1.1	-2.3	0.3	0.1	-0.6	-0.3	0.6	0.3
12	0.2	-0.9	-2.8	-0.7	-0.9	-0.5	-1.0	-0.5	-0.4	-1.3
13	-0.3	0.6	-2.3	-0.3	1.4	-0.5	-2.0	0.2	0.5	-1.1
14	-0.2	0.4	-0.3	0.2	0.3	0.6	-0.1	1.1	0.8	1.4
15	-2.2	-0.8	0.1	-0.6	-1.0	0.5	0.9	-0.8	2.0	1.9
16	0.8	1.3	-1.1	2.1	2.4	0.6	0.2	1.7	1.0	-1.2

Average variation of gas gain: 1.5%

Module Production Status

End of Module Production: March 2004

Module Production Status

-9	-8	-7	-6	-5	-4	-3	-2	-1	+1	+2	+3	+4	+5	+6	+7	+8	+9	
260		268		276		284)	292		300)	308)	316)	324)	່ວ∩
(264) (272) (280)	288) (296)	304)	312)	320		328	_20
259		267		275		283)	291		299)	307)	315)	323)	10
	<u> 263 </u>		<u> </u>		<u> </u>		<u></u>		<u> </u>)	<u>(303</u>		<u></u>		<u>(319</u>)		<u></u>	_13
258	<u></u>		270		279		286		201	<u>298</u>	202		210	<u> </u>	210	322	226	18
257		265		273		281		289		297		305		313		321		
	261)	269)	277)	285)(293)	301)	309)	317		325	17
188		196		204		212)	220		228)	236)	244)	252)	16
(<u> 192 </u>) (<u> 200 </u>		<u> 208 </u>)	<u> </u>) (<u> 224 </u>)	<u>232</u>)	<u>240</u>)	<u>248</u>		<u> </u>	_ 10
		(195)	400	(203)		<u>211</u>) 	<u></u>		<u>227</u>)	235)	<u>243</u>)	251		15
186				202) 		218		226) 		242		250		
	190) (198		206		214		222)	230)	238)	246		254	14
185	<u></u>	193		201	<u></u>	209)	217		225)	233)	241)	249)	- 4 2
(<u> 189 </u>)(197) (205)	213)(221)	229)	237)	245		<u> </u>	13
				136		<u> </u>		<u> </u>		<u>(160</u>)		168		176		184)	12
(<u> 124 </u>		<u> </u>		<u> 140 </u>				156		<u> </u>)	<u> </u>) 175		192		_ 1 ∠
(123		131		139	(<u>143</u>)			155)	163		171		179		,	11
		126		134		142)	150))	174)	182)	- 4 0
(<u> 122 </u>)	<u> 130 </u>) (138)	146) (<u> </u>)	162)	170)	178			_10
		125		133		<u> </u>)	149		157)	165)	173)	181)	Q
(<u> 121 </u>		129		<u> 137 </u>		<u> </u>		<u> 153 </u>		<u>161</u>		<u> </u>			400		_ 3
(060		890		076		084		002	090	,		108				,	8
		063		071		079		087		095		103				119	,	- 7
(059)(067)	075)	083		091)	099)	107)	115			1
		062		070		078		086		094)	102)	110)	118)	⁻ 6
(058		066		074		082		090		098		<u> </u>)	<u></u>			_ U
,	057	061	065	069	072		0	085	000	093				<u>109</u>			,	5
		004		012		020		028		036)	044		052				-
			008		016		024		032		040		048		056	1		4
		003		011		019)	027		035)	043)	051)		-	ົ່ງ
			007		015		023		031)	039)	047)	055			_ ວ
		002		010	044	018	000	026	020	034)	042		050				2
		001		009	014	,		025	030	033		041		049				
			005		013		021		029)	037)	045)	053			1
BOD	ΟY	pro	oduc	ed				MO	DUL	E	un	der 1	test		ok			-

Space Qualification

MOD 06	Air	Vacuum
Length	q_{He}	Safety
mm	$10^{-5} \ rac{l \cdot mbar}{s}$	Factor CO_2
587	5.7	4.1
611	7.0	4.2
635	4.5	5.6
659	3.8	5.9
\sum	20.9	

MOD 07	Air	Vacuum
Length	q_{He}	Safety
mm	$10^{-5} \ rac{l \cdot mbar}{s}$	Factor CO_2
587	2.6	5.1
611	2.7	5.8
635	8.3	3.5
659	4.0	5.0
\sum	17.6	

Vibration test, Thermo vacuum test \rightarrow Eigenfrequencies, Leak Rate, Gas Gain

Space Qualification, Vibration Test I+II

Z

Vibration-Test-Cycle:

- Sine Sweep 0.5g (10-2000Hz)
- \bullet Random Spectrum $a_{\rm RMS}=6.8g$
- Sine Sweep 0.5g (10-2000Hz)

Space Qualification, Thermo Vacuum Test MOD06 MOD07

Thermovacuum Start 14.07.03 12:29:56

27

Space Qualification, Leak Rate

Mod. No.	$q_{He,Air} \ 10^{-5} \ {l \cdot mbar \over c}$								
	before SQ	Ί ΤVΤ	Vib II						
MOD06: Old Straw Material									
587	5.7			5.2					
611	7.0			6.1					
635	4.5			3.7					
659	3.8			3.5					
Jigg06	21.5	19.9	22.4	19.4					
MO	D07: New S	Straw N	Aateria						
587	2.6			3.1					
611	2.7			3.2					
635	8.3			7.7					
659	4.0			3.4					
Jigg07	13.5	12.7	18.4	14.0					

Space Qualification, Eigenfrequencies

AMS-02 TRD MOD-06

Space Qualification, Eigenfrequencies

AMS-02 TRD MOD-07

Space Qualification, Gas Gain

AMS02-TRD: Longterm-Vacuum-Test

NI:S		2	*

Mod.	Length	Air	Vacuum	Gas Gain	
No.	[mm]	q_{He}	Safety-	ArC	O_2
		$\left[10^{-5} \frac{l \cdot mbar}{s}\right]$	Factor	U = 1	350V
			CO_2	Mean	RMS
					[%]
LZT I	1534.61	6.0	7.4	6018.6	1.65
LZT II	1534.61	5.7	7.8	5922.2	1.82
LZT III	1534.61	5.2	7.2	5891.4	1.70
LZT IV	1534.61	5.8	7.5	5756.6	2.17
LZT V	1534.61	6.3	6.9	5902.3	1.64
LZT VI	1534.61	5.1	7.7	5737.9	1.11
LZT VII	1534.61	4.7	7.9	5906.7	1.99
LZT VIII	1534.61	5.5	7.7	5867.4	1.25

Conclusion

- \bullet Single Straw Test \rightarrow Selection of gastight Straws
- TRD: 328 Flight Modules
 - Flight Modules ready for installation: 158
 - Flight Modules produced: 177
 - Production ready March 2004
- Space Qualification successful
- Longterm-Test started
- TRD-Assembly + Cosmictest \rightarrow autumn 2004
- AMS02-Assembly end of 2004

